Geometery Made Easy

Geometry Made Easy! ๐Ÿ“โœจ Hereโ€™s a simple, emoji-filled summary of all the key geometry concepts from your PDF, perfect for SSC CHSL Quant Aptitude prep! 12 Basic Concepts ๐ŸŸข Point: An exact location, no sizeโ€”just a dot! โšซ Line Segment: Straight path between two points (A & B) with a fixed length. ๐Ÿ“ Ray: Starts at a point and goes on forever in one direction. โžก๏ธ Intersecting Lines: Cross at a point. โœ–๏ธ Concurrent Lines: 3+ lines meeting at the same point. ๐ŸŒŸ Angles ๐Ÿ”บ Angle: Formed when two lines meet at a point. (โˆ AOB) ๐Ÿงญ Right Angle: 90ยฐ โฌ› Acute Angle: Less than 90ยฐ ๐Ÿ”ฝ Obtuse Angle: Between 90ยฐ and 180ยฐ ๐Ÿ”ผ Reflex Angle: Between 180ยฐ and 360ยฐ ๐Ÿ”„ Complementary Angles: Add up to 90ยฐ. 60ยฐ + 30ยฐ = 90ยฐ ๐Ÿค Supplementary Angles: Add up to 180ยฐ. 130ยฐ + 50ยฐ = 180ยฐ ๐Ÿ‘ซ Vertically Opposite Angles: Equal when two lines cross. ๐Ÿ” Bisector: Divides an angle into two equal parts. โœ‚๏ธ Lines & Parallelism ๐ŸŸฆ Parallel Lines: Never meet, always same distance apart. ใ€ฐ๏ธใ€ฐ๏ธ Transversal: Cuts across two or more lines. โž– Alternate Angles: Equal when lines are parallel. ๐Ÿ”„ Corresponding Angles: Equal when lines are parallel. ๐ŸŸฐ Sum of Angles on a Straight Line: 180ยฐ โžก๏ธ Triangles ๐Ÿ”บ Triangle: 3 sides, 3 angles. โ–ณ Sum of Angles: Always 180ยฐ ๐Ÿ”ข Side Rule: Any two sidesโ€™ sum > third side. โž• Exterior Angle: Equals sum of two opposite interior angles. ๐Ÿ”„ Area of Triangle ๐Ÿ“ $ Area = \frac{1}{2} \times base \times height $ ๐Ÿ•๏ธ $ Area = \frac{1}{2} ab \sin C $ (using sine) ๐ŸŸข Heronโ€™s Formula: $ \sqrt{s(s-a)(s-b)(s-c)} $, where $ s = \frac{a+b+c}{2} $ ๐Ÿงฎ Special Segments in Triangles ๐Ÿ“ Median: Vertex to midpoint of opposite side. Intersect at centroid (divides median 2:1). ๐Ÿ”น Altitude: Perpendicular from vertex to opposite side. Meet at orthocenter. โฌ†๏ธ Angle Bisector: Divides angle into two equal parts, meet at incentre. โœ‚๏ธ Perpendicular Bisector: Cuts side into two equal parts at 90ยฐ, meet at circumcentre. โž• Similarity & Area ๐ŸŸ  Similar Triangles: Angles equal, sides in proportion. ๐Ÿ” Area Ratio: Ratio of areas = (ratio of sides)ยฒ ๐Ÿ“Š Polygons ๐ŸŸฃ Regular Polygon: All sides & angles equal. ๐Ÿ›‘ Sum of Angles: $ 180(n-2) $, where n = number of sides. ๐Ÿ”ข Interior Angle: $ \frac{180(n-2)}{n} $ ๐Ÿงฎ Example: Octagon (8 sides): Each angle = 135ยฐ ๐Ÿ›‘ Quadrilaterals ๐ŸŸค Square: All sides equal, all angles 90ยฐ. Area = $ a^2 $, Diagonal = $ a\sqrt{2} $ โฌ› Rectangle: Opposite sides equal, all angles 90ยฐ. Area = length ร— breadth ๐ŸŸฆ Parallelogram: Opposite sides equal & parallel. Area = base ร— height ๐Ÿ”ฒ Rhombus: All sides equal, diagonals perpendicular. Area = $ \frac{1}{2} \times d_1 \times d_2 $ ๐Ÿ’Ž Trapezium: One pair of parallel sides. Area = $ \frac{1}{2} \times (sum of parallel sides) \times height $ ๐ŸŸซ Circle โšช Center: Fixed point (O) ๐ŸŸข Radius (r): Distance from center to edge. ๐Ÿ“ Diameter (d): $ 2r $ โฌ…๏ธโžก๏ธ Circumference: $ 2\pi r $ ๐Ÿ”ต Area: $ \pi r^2 $ ๐Ÿงฎ Chord: Line joining two points on the circle. โž– Arc: Part of circumference. ๐ŸŸ  Sector: โ€˜Pizza sliceโ€™ of the circle. Area = $ \frac{\theta}{360} \times \pi r^2 $ ๐Ÿ• Tangent: Touches circle at one point, perpendicular to radius. ๐Ÿš Key Circle Properties ๐ŸŸก Equal chords = equal distance from center ๐ŸŸฐ Angle in a semicircle = 90ยฐ โฌ› Angles in same arc = equal ๐Ÿ” Angle at center = 2 ร— angle at circumference (same arc) ๐Ÿ”„ Intersecting Chords Rule: $ AP \times PB = CP \times PD $ โœ–๏ธ Tangents from same point are equal ๐ŸŸฐ Important Examples & Tricks ๐Ÿ† Sum of Third Side in Triangle: If two sides are 12 & 7, possible third sides = 6 to 18 (integers), sum = 156. Area of Hexagon: $ \frac{3\sqrt{3}}{2} a^2 $ for side a. ๐ŸŸฉ Circle Chord Example: Chord of length 8 cm is twice as far from center as chord of 10 cm. Use Pythagoras to solve! Parallel Chords Example: Distance between two chords = add/subtract their distances from center. Emoji Legend ๐Ÿ—บ๏ธ โšซ Point ๐Ÿ“ Line/Length โžก๏ธ Ray/Direction โœ–๏ธ Intersect ๐ŸŒŸ Concurrent โฌ› Right angle/Square ๐Ÿ”ฝ Acute/Small ๐Ÿ”ผ Obtuse/Large ๐Ÿ”„ Reflex/Alternate ๐Ÿค Complementary ๐Ÿ‘ซ Supplementary ๐Ÿ” Equal/Vertically opposite/Similar โœ‚๏ธ Bisector ใ€ฐ๏ธ Parallel โž– Chord/Transversal โ–ณ Triangle ๐Ÿ•๏ธ Area ๐Ÿงฎ Calculation ๐Ÿ”น Median/Centroid โฌ†๏ธ Altitude/Orthocenter ๐Ÿ›‘ Polygon ๐ŸŸฆ Rectangle ๐Ÿ”ฒ Parallelogram ๐Ÿ’Ž Rhombus ๐ŸŸซ Trapezium โšช Circle ๐Ÿ• Sector ๐Ÿš Tangent ๐ŸŸฐ Equal ๐ŸŸก Key Point ๐Ÿ† Example Use this guide for quick revision and easy understanding of all geometry basics for your exam! Good luck! ๐Ÿ€12

ZgotmplZ

Geometry Made Easy! ๐Ÿ“โœจ

Hereโ€™s a simple, emoji-filled summary of all the key geometry concepts from your PDF, perfect for SSC CHSL Quant Aptitude prep! 12


Basic Concepts ๐ŸŸข

  • Point: An exact location, no sizeโ€”just a dot! โšซ
  • Line Segment: Straight path between two points (A & B) with a fixed length. ๐Ÿ“
  • Ray: Starts at a point and goes on forever in one direction. โžก๏ธ
  • Intersecting Lines: Cross at a point. โœ–๏ธ
  • Concurrent Lines: 3+ lines meeting at the same point. ๐ŸŒŸ

Angles ๐Ÿ”บ

  • Angle: Formed when two lines meet at a point. (โˆ AOB) ๐Ÿงญ
  • Right Angle: 90ยฐ โฌ›
  • Acute Angle: Less than 90ยฐ ๐Ÿ”ฝ
  • Obtuse Angle: Between 90ยฐ and 180ยฐ ๐Ÿ”ผ
  • Reflex Angle: Between 180ยฐ and 360ยฐ ๐Ÿ”„
  • Complementary Angles: Add up to 90ยฐ. 60ยฐ + 30ยฐ = 90ยฐ ๐Ÿค
  • Supplementary Angles: Add up to 180ยฐ. 130ยฐ + 50ยฐ = 180ยฐ ๐Ÿ‘ซ
  • Vertically Opposite Angles: Equal when two lines cross. ๐Ÿ”
  • Bisector: Divides an angle into two equal parts. โœ‚๏ธ

Lines & Parallelism ๐ŸŸฆ

  • Parallel Lines: Never meet, always same distance apart. ใ€ฐ๏ธใ€ฐ๏ธ
  • Transversal: Cuts across two or more lines. โž–
  • Alternate Angles: Equal when lines are parallel. ๐Ÿ”„
  • Corresponding Angles: Equal when lines are parallel. ๐ŸŸฐ
  • Sum of Angles on a Straight Line: 180ยฐ โžก๏ธ

Triangles ๐Ÿ”บ

  • Triangle: 3 sides, 3 angles. โ–ณ
  • Sum of Angles: Always 180ยฐ ๐Ÿ”ข
  • Side Rule: Any two sidesโ€™ sum > third side. โž•
  • Exterior Angle: Equals sum of two opposite interior angles. ๐Ÿ”„

Area of Triangle ๐Ÿ“

  • $ Area = \frac{1}{2} \times base \times height $ ๐Ÿ•๏ธ
  • $ Area = \frac{1}{2} ab \sin C $ (using sine) ๐ŸŸข
  • Heronโ€™s Formula: $ \sqrt{s(s-a)(s-b)(s-c)} $, where $ s = \frac{a+b+c}{2} $ ๐Ÿงฎ

Special Segments in Triangles ๐Ÿ“

  • Median: Vertex to midpoint of opposite side. Intersect at centroid (divides median 2:1). ๐Ÿ”น
  • Altitude: Perpendicular from vertex to opposite side. Meet at orthocenter. โฌ†๏ธ
  • Angle Bisector: Divides angle into two equal parts, meet at incentre. โœ‚๏ธ
  • Perpendicular Bisector: Cuts side into two equal parts at 90ยฐ, meet at circumcentre. โž•

Similarity & Area ๐ŸŸ 

  • Similar Triangles: Angles equal, sides in proportion. ๐Ÿ”
  • Area Ratio: Ratio of areas = (ratio of sides)ยฒ ๐Ÿ“Š

Polygons ๐ŸŸฃ

  • Regular Polygon: All sides & angles equal. ๐Ÿ›‘
  • Sum of Angles: $ 180(n-2) $, where n = number of sides. ๐Ÿ”ข
  • Interior Angle: $ \frac{180(n-2)}{n} $ ๐Ÿงฎ
  • Example: Octagon (8 sides): Each angle = 135ยฐ ๐Ÿ›‘

Quadrilaterals ๐ŸŸค

  • Square: All sides equal, all angles 90ยฐ. Area = $ a^2 $, Diagonal = $ a\sqrt{2} $ โฌ›
  • Rectangle: Opposite sides equal, all angles 90ยฐ. Area = length ร— breadth ๐ŸŸฆ
  • Parallelogram: Opposite sides equal & parallel. Area = base ร— height ๐Ÿ”ฒ
  • Rhombus: All sides equal, diagonals perpendicular. Area = $ \frac{1}{2} \times d_1 \times d_2 $ ๐Ÿ’Ž
  • Trapezium: One pair of parallel sides. Area = $ \frac{1}{2} \times (sum of parallel sides) \times height $ ๐ŸŸซ

Circle โšช

  • Center: Fixed point (O) ๐ŸŸข
  • Radius (r): Distance from center to edge. ๐Ÿ“
  • Diameter (d): $ 2r $ โฌ…๏ธโžก๏ธ
  • Circumference: $ 2\pi r $ ๐Ÿ”ต
  • Area: $ \pi r^2 $ ๐Ÿงฎ
  • Chord: Line joining two points on the circle. โž–
  • Arc: Part of circumference. ๐ŸŸ 
  • Sector: ‘Pizza slice’ of the circle. Area = $ \frac{\theta}{360} \times \pi r^2 $ ๐Ÿ•
  • Tangent: Touches circle at one point, perpendicular to radius. ๐Ÿš

Key Circle Properties ๐ŸŸก

  • Equal chords = equal distance from center ๐ŸŸฐ
  • Angle in a semicircle = 90ยฐ โฌ›
  • Angles in same arc = equal ๐Ÿ”
  • Angle at center = 2 ร— angle at circumference (same arc) ๐Ÿ”„
  • Intersecting Chords Rule: $ AP \times PB = CP \times PD $ โœ–๏ธ
  • Tangents from same point are equal ๐ŸŸฐ

Important Examples & Tricks ๐Ÿ†

  • Sum of Third Side in Triangle: If two sides are 12 & 7, possible third sides = 6 to 18 (integers), sum = 156.
  • Area of Hexagon: $ \frac{3\sqrt{3}}{2} a^2 $ for side a. ๐ŸŸฉ
  • Circle Chord Example: Chord of length 8 cm is twice as far from center as chord of 10 cm. Use Pythagoras to solve!
  • Parallel Chords Example: Distance between two chords = add/subtract their distances from center.

Emoji Legend ๐Ÿ—บ๏ธ

  • โšซ Point
  • ๐Ÿ“ Line/Length
  • โžก๏ธ Ray/Direction
  • โœ–๏ธ Intersect
  • ๐ŸŒŸ Concurrent
  • โฌ› Right angle/Square
  • ๐Ÿ”ฝ Acute/Small
  • ๐Ÿ”ผ Obtuse/Large
  • ๐Ÿ”„ Reflex/Alternate
  • ๐Ÿค Complementary
  • ๐Ÿ‘ซ Supplementary
  • ๐Ÿ” Equal/Vertically opposite/Similar
  • โœ‚๏ธ Bisector
  • ใ€ฐ๏ธ Parallel
  • โž– Chord/Transversal
  • โ–ณ Triangle
  • ๐Ÿ•๏ธ Area
  • ๐Ÿงฎ Calculation
  • ๐Ÿ”น Median/Centroid
  • โฌ†๏ธ Altitude/Orthocenter
  • ๐Ÿ›‘ Polygon
  • ๐ŸŸฆ Rectangle
  • ๐Ÿ”ฒ Parallelogram
  • ๐Ÿ’Ž Rhombus
  • ๐ŸŸซ Trapezium
  • โšช Circle
  • ๐Ÿ• Sector
  • ๐Ÿš Tangent
  • ๐ŸŸฐ Equal
  • ๐ŸŸก Key Point
  • ๐Ÿ† Example

Use this guide for quick revision and easy understanding of all geometry basics for your exam! Good luck! ๐Ÿ€12

โ‚

  1. Geometery.pdf ↩︎ ↩︎

  2. education.study_materials ↩︎ ↩︎