Geometry Made Easy! ๐โจ Hereโs a simple, emoji-filled summary of all the key geometry concepts from your PDF, perfect for SSC CHSL Quant Aptitude prep! 12 Basic Concepts ๐ข Point: An exact location, no sizeโjust a dot! โซ Line Segment: Straight path between two points (A & B) with a fixed length. ๐ Ray: Starts at a point and goes on forever in one direction. โก๏ธ Intersecting Lines: Cross at a point. โ๏ธ Concurrent Lines: 3+ lines meeting at the same point. ๐ Angles ๐บ Angle: Formed when two lines meet at a point. (โ AOB) ๐งญ Right Angle: 90ยฐ โฌ Acute Angle: Less than 90ยฐ ๐ฝ Obtuse Angle: Between 90ยฐ and 180ยฐ ๐ผ Reflex Angle: Between 180ยฐ and 360ยฐ ๐ Complementary Angles: Add up to 90ยฐ. 60ยฐ + 30ยฐ = 90ยฐ ๐ค Supplementary Angles: Add up to 180ยฐ. 130ยฐ + 50ยฐ = 180ยฐ ๐ซ Vertically Opposite Angles: Equal when two lines cross. ๐ Bisector: Divides an angle into two equal parts. โ๏ธ Lines & Parallelism ๐ฆ Parallel Lines: Never meet, always same distance apart. ใฐ๏ธใฐ๏ธ Transversal: Cuts across two or more lines. โ Alternate Angles: Equal when lines are parallel. ๐ Corresponding Angles: Equal when lines are parallel. ๐ฐ Sum of Angles on a Straight Line: 180ยฐ โก๏ธ Triangles ๐บ Triangle: 3 sides, 3 angles. โณ Sum of Angles: Always 180ยฐ ๐ข Side Rule: Any two sidesโ sum > third side. โ Exterior Angle: Equals sum of two opposite interior angles. ๐ Area of Triangle ๐ $ Area = \frac{1}{2} \times base \times height $ ๐๏ธ $ Area = \frac{1}{2} ab \sin C $ (using sine) ๐ข Heronโs Formula: $ \sqrt{s(s-a)(s-b)(s-c)} $, where $ s = \frac{a+b+c}{2} $ ๐งฎ Special Segments in Triangles ๐ Median: Vertex to midpoint of opposite side. Intersect at centroid (divides median 2:1). ๐น Altitude: Perpendicular from vertex to opposite side. Meet at orthocenter. โฌ๏ธ Angle Bisector: Divides angle into two equal parts, meet at incentre. โ๏ธ Perpendicular Bisector: Cuts side into two equal parts at 90ยฐ, meet at circumcentre. โ Similarity & Area ๐ Similar Triangles: Angles equal, sides in proportion. ๐ Area Ratio: Ratio of areas = (ratio of sides)ยฒ ๐ Polygons ๐ฃ Regular Polygon: All sides & angles equal. ๐ Sum of Angles: $ 180(n-2) $, where n = number of sides. ๐ข Interior Angle: $ \frac{180(n-2)}{n} $ ๐งฎ Example: Octagon (8 sides): Each angle = 135ยฐ ๐ Quadrilaterals ๐ค Square: All sides equal, all angles 90ยฐ. Area = $ a^2 $, Diagonal = $ a\sqrt{2} $ โฌ Rectangle: Opposite sides equal, all angles 90ยฐ. Area = length ร breadth ๐ฆ Parallelogram: Opposite sides equal & parallel. Area = base ร height ๐ฒ Rhombus: All sides equal, diagonals perpendicular. Area = $ \frac{1}{2} \times d_1 \times d_2 $ ๐ Trapezium: One pair of parallel sides. Area = $ \frac{1}{2} \times (sum of parallel sides) \times height $ ๐ซ Circle โช Center: Fixed point (O) ๐ข Radius (r): Distance from center to edge. ๐ Diameter (d): $ 2r $ โฌ ๏ธโก๏ธ Circumference: $ 2\pi r $ ๐ต Area: $ \pi r^2 $ ๐งฎ Chord: Line joining two points on the circle. โ Arc: Part of circumference. ๐ Sector: โPizza sliceโ of the circle. Area = $ \frac{\theta}{360} \times \pi r^2 $ ๐ Tangent: Touches circle at one point, perpendicular to radius. ๐ Key Circle Properties ๐ก Equal chords = equal distance from center ๐ฐ Angle in a semicircle = 90ยฐ โฌ Angles in same arc = equal ๐ Angle at center = 2 ร angle at circumference (same arc) ๐ Intersecting Chords Rule: $ AP \times PB = CP \times PD $ โ๏ธ Tangents from same point are equal ๐ฐ Important Examples & Tricks ๐ Sum of Third Side in Triangle: If two sides are 12 & 7, possible third sides = 6 to 18 (integers), sum = 156. Area of Hexagon: $ \frac{3\sqrt{3}}{2} a^2 $ for side a. ๐ฉ Circle Chord Example: Chord of length 8 cm is twice as far from center as chord of 10 cm. Use Pythagoras to solve! Parallel Chords Example: Distance between two chords = add/subtract their distances from center. Emoji Legend ๐บ๏ธ โซ Point ๐ Line/Length โก๏ธ Ray/Direction โ๏ธ Intersect ๐ Concurrent โฌ Right angle/Square ๐ฝ Acute/Small ๐ผ Obtuse/Large ๐ Reflex/Alternate ๐ค Complementary ๐ซ Supplementary ๐ Equal/Vertically opposite/Similar โ๏ธ Bisector ใฐ๏ธ Parallel โ Chord/Transversal โณ Triangle ๐๏ธ Area ๐งฎ Calculation ๐น Median/Centroid โฌ๏ธ Altitude/Orthocenter ๐ Polygon ๐ฆ Rectangle ๐ฒ Parallelogram ๐ Rhombus ๐ซ Trapezium โช Circle ๐ Sector ๐ Tangent ๐ฐ Equal ๐ก Key Point ๐ Example Use this guide for quick revision and easy understanding of all geometry basics for your exam! Good luck! ๐12

Geometry Made Easy! ๐โจ
Hereโs a simple, emoji-filled summary of all the key geometry concepts from your PDF, perfect for SSC CHSL Quant Aptitude prep! 12
Basic Concepts ๐ข
- Point: An exact location, no sizeโjust a dot! โซ
- Line Segment: Straight path between two points (A & B) with a fixed length. ๐
- Ray: Starts at a point and goes on forever in one direction. โก๏ธ
- Intersecting Lines: Cross at a point. โ๏ธ
- Concurrent Lines: 3+ lines meeting at the same point. ๐
Angles ๐บ
- Angle: Formed when two lines meet at a point. (โ AOB) ๐งญ
- Right Angle: 90ยฐ โฌ
- Acute Angle: Less than 90ยฐ ๐ฝ
- Obtuse Angle: Between 90ยฐ and 180ยฐ ๐ผ
- Reflex Angle: Between 180ยฐ and 360ยฐ ๐
- Complementary Angles: Add up to 90ยฐ. 60ยฐ + 30ยฐ = 90ยฐ ๐ค
- Supplementary Angles: Add up to 180ยฐ. 130ยฐ + 50ยฐ = 180ยฐ ๐ซ
- Vertically Opposite Angles: Equal when two lines cross. ๐
- Bisector: Divides an angle into two equal parts. โ๏ธ
Lines & Parallelism ๐ฆ
- Parallel Lines: Never meet, always same distance apart. ใฐ๏ธใฐ๏ธ
- Transversal: Cuts across two or more lines. โ
- Alternate Angles: Equal when lines are parallel. ๐
- Corresponding Angles: Equal when lines are parallel. ๐ฐ
- Sum of Angles on a Straight Line: 180ยฐ โก๏ธ
Triangles ๐บ
- Triangle: 3 sides, 3 angles. โณ
- Sum of Angles: Always 180ยฐ ๐ข
- Side Rule: Any two sidesโ sum > third side. โ
- Exterior Angle: Equals sum of two opposite interior angles. ๐
Area of Triangle ๐
- $ Area = \frac{1}{2} \times base \times height $ ๐๏ธ
- $ Area = \frac{1}{2} ab \sin C $ (using sine) ๐ข
- Heronโs Formula: $ \sqrt{s(s-a)(s-b)(s-c)} $, where $ s = \frac{a+b+c}{2} $ ๐งฎ
Special Segments in Triangles ๐
- Median: Vertex to midpoint of opposite side. Intersect at centroid (divides median 2:1). ๐น
- Altitude: Perpendicular from vertex to opposite side. Meet at orthocenter. โฌ๏ธ
- Angle Bisector: Divides angle into two equal parts, meet at incentre. โ๏ธ
- Perpendicular Bisector: Cuts side into two equal parts at 90ยฐ, meet at circumcentre. โ
Similarity & Area ๐
- Similar Triangles: Angles equal, sides in proportion. ๐
- Area Ratio: Ratio of areas = (ratio of sides)ยฒ ๐
Polygons ๐ฃ
- Regular Polygon: All sides & angles equal. ๐
- Sum of Angles: $ 180(n-2) $, where n = number of sides. ๐ข
- Interior Angle: $ \frac{180(n-2)}{n} $ ๐งฎ
- Example: Octagon (8 sides): Each angle = 135ยฐ ๐
Quadrilaterals ๐ค
- Square: All sides equal, all angles 90ยฐ. Area = $ a^2 $, Diagonal = $ a\sqrt{2} $ โฌ
- Rectangle: Opposite sides equal, all angles 90ยฐ. Area = length ร breadth ๐ฆ
- Parallelogram: Opposite sides equal & parallel. Area = base ร height ๐ฒ
- Rhombus: All sides equal, diagonals perpendicular. Area = $ \frac{1}{2} \times d_1 \times d_2 $ ๐
- Trapezium: One pair of parallel sides. Area = $ \frac{1}{2} \times (sum of parallel sides) \times height $ ๐ซ
Circle โช
- Center: Fixed point (O) ๐ข
- Radius (r): Distance from center to edge. ๐
- Diameter (d): $ 2r $ โฌ ๏ธโก๏ธ
- Circumference: $ 2\pi r $ ๐ต
- Area: $ \pi r^2 $ ๐งฎ
- Chord: Line joining two points on the circle. โ
- Arc: Part of circumference. ๐
- Sector: ‘Pizza slice’ of the circle. Area = $ \frac{\theta}{360} \times \pi r^2 $ ๐
- Tangent: Touches circle at one point, perpendicular to radius. ๐
Key Circle Properties ๐ก
- Equal chords = equal distance from center ๐ฐ
- Angle in a semicircle = 90ยฐ โฌ
- Angles in same arc = equal ๐
- Angle at center = 2 ร angle at circumference (same arc) ๐
- Intersecting Chords Rule: $ AP \times PB = CP \times PD $ โ๏ธ
- Tangents from same point are equal ๐ฐ
Important Examples & Tricks ๐
- Sum of Third Side in Triangle: If two sides are 12 & 7, possible third sides = 6 to 18 (integers), sum = 156.
- Area of Hexagon: $ \frac{3\sqrt{3}}{2} a^2 $ for side a. ๐ฉ
- Circle Chord Example: Chord of length 8 cm is twice as far from center as chord of 10 cm. Use Pythagoras to solve!
- Parallel Chords Example: Distance between two chords = add/subtract their distances from center.
Emoji Legend ๐บ๏ธ
- โซ Point
- ๐ Line/Length
- โก๏ธ Ray/Direction
- โ๏ธ Intersect
- ๐ Concurrent
- โฌ Right angle/Square
- ๐ฝ Acute/Small
- ๐ผ Obtuse/Large
- ๐ Reflex/Alternate
- ๐ค Complementary
- ๐ซ Supplementary
- ๐ Equal/Vertically opposite/Similar
- โ๏ธ Bisector
- ใฐ๏ธ Parallel
- โ Chord/Transversal
- โณ Triangle
- ๐๏ธ Area
- ๐งฎ Calculation
- ๐น Median/Centroid
- โฌ๏ธ Altitude/Orthocenter
- ๐ Polygon
- ๐ฆ Rectangle
- ๐ฒ Parallelogram
- ๐ Rhombus
- ๐ซ Trapezium
- โช Circle
- ๐ Sector
- ๐ Tangent
- ๐ฐ Equal
- ๐ก Key Point
- ๐ Example
Use this guide for quick revision and easy understanding of all geometry basics for your exam! Good luck! ๐12