Calculating a Derivative by Definition
Step-by-Step: Calculating a Derivative by Definition
Let’s use the four-step process for finding the derivative of a simple quadratic function, as this approach is both fundamental and widely used in calculus12. For this example, let’s use a general quadratic function, but if you want a specific example from the PDF, we’ll use the quadratic function $ f(x) = x^2 $ (which is used in the context of quadratic functions3).
However, the PDF also discusses the slope of a quadratic function $ f(x) = ax^2 + bx + c $, mentioning that the slope at any point is $ 2ax + b $. Let’s see how this is derived using the definition.
Step 1: Write $ f(x + h) $ and $ f(x) $
Suppose $ f(x) = ax^2 + bx + c $ (you can set $ a=1, b=0, c=0 $ for $ f(x) = x^2 $, but we’ll keep it general).
$$ f(x + h) = a(x + h)^2 + b(x + h) + c = a(x^2 + 2xh + h^2) + b(x + h) + c $$$$ = ax^2 + 2axh + ah^2 + bx + bh + c $$$$ f(x) = ax^2 + bx + c $$Step 2: Compute $ f(x + h) - f(x) $
Subtract $ f(x) $ from $ f(x + h) $:
$$ f(x + h) - f(x) = (ax^2 + 2axh + ah^2 + bx + bh + c) - (ax^2 + bx + c) $$$$ = 2axh + ah^2 + bh $$$$ = h(2ax + ah + b) $$Step 3: Divide by $ h $
$$ \frac{f(x + h) - f(x)}{h} = \frac{h(2ax + ah + b)}{h} = 2ax + ah + b $$Step 4: Take the limit as $ h \to 0 $
$$ f'(x) = \lim_{h \to 0} (2ax + ah + b) = 2ax + b $$Summary Table
Step | Action | Expression/Result |
---|---|---|
1 | Write $ f(x + h) $, $ f(x) $ | $ f(x+h) = a(x+h)^2 + ··· $ |
2 | Subtract $ f(x) $ from $ f(x+h) $ | $ h(2ax + ah + b) $ |
3 | Divide by $ h $ | $ 2ax + ah + b $ |
4 | Take the limit $ h \to 0 $ | $ 2ax + b $ |
Example from the PDF
The PDF states (in Section 3.2):
“For the quadratic function described as $ f(x) = ax^2 + bx + c $ where $ a \neq 0 $, the slope of $ f $ at any given point $ (x, f(x)) $ is $ (2ax + b) $.”
This matches exactly the result we derived above using the definition of the derivative3.
Quick Example: $ f(x) = x^2 $
Let’s do the calculation for $ f(x) = x^2 $:
- Step 1: $ f(x + h) = (x + h)^2 = x^2 + 2xh + h^2 $ $ f(x) = x^2 $
- Step 2: $ f(x + h) - f(x) = 2xh + h^2 $
- Step 3: $ \frac{f(x + h) - f(x)}{h} = \frac{2xh + h^2}{h} = 2x + h $
- Step 4: $ \lim_{h \to 0} (2x + h) = 2x $
So, the derivative of $ f(x) = x^2 $ is $ f’(x) = 2x $, which matches the general result above (with $ a=1, b=0 $)31.
Related Question
Q: What is the slope of the quadratic function $ f(x) = 3x^2 + 4x + 1 $ at $ x = 2 $?
A: Using the general result $ f’(x) = 2ax + b $, $ a = 3, b = 4 $, so $ f’(x) = 6x + 4 $. At $ x = 2 $: $ f’(2) = 6 \times 2 + 4 = 16 $.
Summary
- The derivative is the slope of the tangent to the curve at a point.
- Use the four-step process:
- Write $ f(x + h) $ and $ f(x) $.
- Compute $ f(x + h) - f(x) $.
- Divide by $ h $.
- Take the limit as $ h \to 0 $.
- For quadratic functions, the derivative is $ 2ax + b $.
This method works for any differentiable function, and the PDF confirms this for quadratic functions31.
https://math.wvu.edu/~hlai2/Teaching/Tip-Pdf/Tip1-5.pdf ↩︎ ↩︎ ↩︎
https://faculty.ung.edu/jallagan/Courses materials/Math 1450 Calculus 1/Syllabus and ebook/problems and solutions for calculus 1.pdf ↩︎