Mathematics for Data Science 1
All Questions
Q: If the slope of parabola y = ax² + bx + c, where a, b, c ∈ ℝ{0} at points (3, 2) and (2, 3) are 31 and 14 respectively, then find the value of a.
Solution Step by Step 📝
Step 1: Find the derivative 🔍
For parabola y = ax² + bx + c, the slope at any point is: $ \frac{dy}{dx} = 2ax + b $
Step 2: Set up equations using given conditions 📐
At point (3, 2), slope = 31: $ 2a(3) + b = 31 $ $ 6a + b = 31 \quad …(equation 1) $
At point (2, 3), slope = 14: $ 2a(2) + b = 14 $ $ 4a + b = 14 \quad …(equation 2) $
Step 3: Solve the system ⚡
From equation 1: $ b = 31 - 6a $
Substitute into equation 2: $ 4a + (31 - 6a) = 14 $ $ 4a + 31 - 6a = 14 $ $ -2a = 14 - 31 $ $ -2a = -17 $ $ a = \frac{17}{2} = 8.5 $
Step 4: Verify ✅
If a = 8.5, then b = 31 - 6(8.5) = -20
Check equation 2: 4(8.5) + (-20) = 34 - 20 = 14 ✓
Answer: $ a = \frac{17}{2} or 8.5 $ 🎯
Q: If the slope of parabola y = ax² + bx + c, where a, b, c ∈ ℝ{0} at points (
3, 2) and ( 2, 3) are 31and 14respectively, then find the value of a.Solution Step by Step 📝
Step 1: Find the derivative 🔍
For parabola y = ax² + bx + c, the slope at any point is: $ \frac{dy}{dx} = 2ax + b $
Step 2: Set up equations using given conditions 📐
At point (3, 2), slope = 31:
$ 2a(3) + b = 31 $ $ 6a + b = 31 \quad …(equation 1) $
At point (2, 3), slope = 14:
$ 2a(2) + b = 14 $ $ 4a + b = 14 \quad …(equation 2) $
Step 3: Solve the system ⚡
From equation 1: $ b = 31 - 6a $
Substitute into equation 2: $ 4a + (31 - 6a) = 14 $ $ 4a + 31 - 6a = 14 $ $ -2a = 14 - 31 $ $ -2a = -17 $ $ a = \frac{17}{2} = 8.5 $
Step 4: Verify ✅
If a = 8.5, then b = 31 - 6(8.5) = -20
Check equation 2: 4(8.5) + (-20) = 34 - 20 = 14 ✓
Answer: $ a = \frac{17}{2} or 8.5 $ 🎯