Week 6 Practice Assignment

Week 6 Practice Assignment


Mathematics I


Question 1

If $ b > 0 $ and $ 4\log_x b + 9\log_{b^5x} b = 1 $, then the possible value(s) of $ x $ is (are)

  • (a) $ b^{10} $
  • (b) $ b^9 $
  • (c) $ b^{-2} $
  • (d) $ b^5 $
  • (e) $ b^4 $

Solution: Let $ p = \log_b x $. Equation: $ \frac{4}{p} + \frac{9}{5 + p} = 1 $ Solve: $ p^2 - 8p - 20 = 0 $, roots $ p = -2, 10 $. So, $ x = b^{-2} $ or $ x = b^{10} $.


Question 2

George deposits ₹5L in a bank that compounds quarterly at 20% per year. How long will it take to increase his money to 16 times the principal (in years)?

  • (a) $ \frac{\ln 16}{4} $
  • (b) $ \frac{\ln 16}{4 \ln (21/20)} $
  • (c) $ \frac{\ln 2}{\ln (21/20)} $
  • (d) $ \log_{21/20} 2 $
  • (e) $ \frac{\ln 2^4}{\ln (21/20)} $

Solution: $ 16P = P(1 + \frac{20}{400})^{4t} $ Solve: $ t = \frac{\ln 16}{4 \ln (21/20)} = \frac{\ln 2}{\ln (21/20)} = \log_{21/20} 2 $.


Question 3

Choose the set of correct options.

  • (a) $ \log_5 2 $ is a rational number.
  • (b) If $ 0 < b < 1 $ and $ 0 < x < 1 $, then $ \log_b x < 0 $.
  • (c) If $ \log_3(\log_5 x) = 1 $, then $ x = 125 $
  • (d) If $ 0 < b < 1 $, $ 0 < x < 1 $ and $ x > b $, then $ \log_b x > 1 $.
  • (e) If $ 0 < b < 1 $ and $ 0 < x < y $, then $ \log_b x > \log_b y $

Solution: (c): $ \log_3(\log_5 x) = 1 \implies x = 125 $. (e): $ \log_b x > \log_b y $ for $ 0 < b < 1 $ and $ 0 < x < y $.


Question 4

Two types of insects grow as $ f(t) = 5^{3t-2} $ and $ h(t) = 3^{2t-1} $. For what value of $ t $ will both insects be of the same number?

  • (a) $ \frac{\ln 3 + 2\ln 5}{3\ln 5 - 2\ln 3} $
  • (b) $ \frac{\ln 75}{\ln (125/9)} $
  • (c) $ \log_{125} 75 $

Solution: Set $ 5^{3t-2} = 3^{2t-1} $, solve for $ t $: $ t = \frac{\ln 3 + 2\ln 5}{3\ln 5 - 2\ln 3} = \log_{125} 75 $.


Question 5

Which of the following is/are true? (MSQ)

  • (a) If $ m $ and $ n $ are positive real numbers, then $ m^{\log n} = n^{\log m} $
  • (b) $ \log_5 1234567899999999999999 $ is a rational number.
  • (c) The function $ f(x) = \log_{10}(x^2 + x + 1) $ is one-one on $(-0.5, \infty)$

Solution: (a): True by taking logs. (c): $ x^2 + x + 1 $ is one-one (strictly increasing) on $(-0.5, \infty)$, so is its log.


Question 6

Which of the following is/are true? (MSQ)

  • (a) If $ f $ is one-one on $ D $, then $ \log f(x) $ is one-one on $ D $ where defined
  • (b) $ (14!) < (15!) $
  • (c) $ f(x) = 2^x + 3^x + \dots + 100^x $ is one-one on $ \mathbb{R} $
  • (d) There exists a function $ f(x) $ on $ \mathbb{R} $ such that $ \log(f(x)) \geq 100 $ for all $ x \in \mathbb{R} $

Solution: All options (a), (b), (c), (d) are correct.


Question 7

If $ \log_2(x + 4) - \log_2\left(\frac{x}{2} + 2\right) = 1 $, then $ x $ is

  • (a) $-3$
  • (b) 1
  • (c) $-4$
  • (d) 5

Solution: Solve: $ x = -3 $ (only valid solution in domain).


Question 8

Seismologists use the Richter scale: $ R = \ln I - \ln I_0 $. If an earthquake in city A is magnitude 8.0 and city B is reference, what is the ratio of intensities?

  • (a) $ e^8 : 1 $
  • (b) $ e^1 : 2 $
  • (c) $ e^8 : 1 $
  • (d) $ e^5 : 1 $
  • (e) $ e^8 : 2 $

Solution: $ \frac{I}{I_0} = e^8 $, so ratio is $ e^8 : 1 $.


Question 9

Bacteria grow as $ G(t) = G_0 3^{kt} $. If initial count is 1000, after 1 min it is 9000, how long to reach 730,000?

  • (a) 2
  • (b) 1
  • (c) 3
  • (d) 6

Solution: Solve: $ t = \frac{\ln 730}{2 \ln 3} \approx 3 $ minutes.


Question 10

Bulb A is $ f(x) = 3^{x^2+1} $ times brighter than bulb B, where $ x $ is voltage difference. If A is 10 times brighter, what is $ x $?

  • (a) $ \log_3 5 - 1 $
  • (b) $ \log_3 10 $
  • (c) $ \sqrt{\frac{\ln 10}{\ln 3}} $
  • (d) $ \sqrt{\log_3 \frac{10}{3}} $

Solution: $ x = \sqrt{\log_3 \frac{10}{3}} $.


Question 11

If supply voltages are 4 and 3 for bulbs A and B, how many times is A brighter than B?

Solution: $ x = 1 $, so $ 3^{1^2+1} = 9 $. Answer: 9 times.


Question 12

Find the number of values of $ x $ satisfying $ (5x)^{\log_{5x}(6x^3 - 36x^2 + 66x - 35)} = 1 $.

Solution: Solve $ 6x^3 - 36x^2 + 66x - 35 = 1 $, roots $ x = 1, 2, 3 $. Answer: 3 values.


All questions and solutions from the PDF have been extracted above1.


  1. Week-6-practice-assignment-solution.pdf ↩︎