QUIZ 2 Foundational
4 Aug 2024
Solution ๐: Let’s analyze $ f(x) = |x^2 - 4x + 3| + 17 $.
1๏ธโฃ The quadratic $ x^2 - 4x + 3 = (x-1)(x-3) $ can take any real value and is defined for all real $ x $. So, option A is FALSE.
2๏ธโฃ The function involves an absolute value, which is not one-to-one (e.g., $ x = a $ and $ x = b $ can give the same value due to the absolute value), hence not bijective. Option B is FALSE.
3๏ธโฃ The minimum of $ |x^2 - 4x + 3| $ is 0 (attained when $ x^2 - 4x + 3 = 0,\ x=1,3 $), so minimum value of $ f(x) $ is 17, and the function takes all values $ f(x) \geq 17 $. So, the range is $[17, \infty)$, not $[0, \infty)$. Option C is FALSE.
4๏ธโฃ As derived above, the minimum value is 17, attained at $ x = 1, 3 $. Option D is TRUE.
Answer: The minimum value of $ f $ is 17.
Solution ๐: $ y = x^3 - 1 $ is a cubic function, which is bijective and continuous over $ \mathbb{R} $; it has an inverse $ x = \sqrt[^1]{y+1} $, which is also defined for all $ y \in \mathbb{R} $.
So, the domain of the inverse function is all real numbers $ \mathbb{R} $.
Answer: $\mathbb{R}$
Solution ๐: Let’s analyze each option:
A. For $ 0 < b < 1 $, the logarithm function is decreasing. For $ 0 < x < 1 $, $ \log_b x > 0 $, so A is FALSE.
B. For $ 0 < b < 1, 0 < x < 1 $, and $ x > b $, $ \log_b x $ will not necessarily be greater than 1. FALSE.
C. For $ 0 < b < 1 $ and $ x < y $, $ \log_b x > \log_b y $ because the function is decreasing when base is between 0 and 1. TRUE.
D. $ \log_{10} 100 = 2 $, which is rational. TRUE.
Answers: C and D are correct.
Solution ๐: Curve 1 is continuous and differentiable, so Rolle’s theorem applies. There must be points where the derivatives are equal between -4 and 4. TRUE.
Curve 2 has a cusp (sharp corner) at the origin, so the derivative does not exist there. TRUE.
Curve 3: The derivative at the origin and (-2,0) are not necessarily equal. FALSE.
Curve 4 is a constant function (horizontal line), so the derivative exists everywhere (and is zero). FALSE.
Answers: A and B are correct.
Solution ๐: Let $ x = \log_3 m $, so $ m = 3^x $.
Then, $ m^{\log_3 2} = (3^x)^{\log_3 2} = 2^x $ And, $ 2^{\log_3 m} = 2^{x} $
So, $ m^{\log_3 2} + 2^{\log_3 m} = 2^x + 2^x = 2 \cdot 2^x = 8 \implies 2^{x+1} = 8 \implies 2^{x+1} = 2^3 \implies x+1=3 \implies x=2 $.
Therefore, $ m = 3^{2} = 9 $.
Answer: $ m = 9 $
Solution ๐: First, $ f(x) = \sqrt{9 - x^2} $.
Calculate $ f(2) = \sqrt{9 - 4} = \sqrt{5} $.
We need $ \lim_{x \to 2} \frac{\sqrt{9-x^2} - \sqrt{5}}{x-2} $.
Let $ L = \lim_{x \to 2} \frac{\sqrt{9-x^2} - \sqrt{5}}{x-2} $.
Multiply numerator and denominator by the conjugate:
$$ L = \lim_{x \to 2} \frac{(\sqrt{9-x^2} - \sqrt{5})(\sqrt{9-x^2} + \sqrt{5})}{(x-2)(\sqrt{9-x^2} + \sqrt{5})} = \lim_{x \to 2} \frac{9-x^2 - 5}{(x-2)(\sqrt{9-x^2} + \sqrt{5})} = \lim_{x \to 2} \frac{4 - x^2}{(x-2)(\sqrt{9-x^2} + \sqrt{5})} $$But $ 4 - x^2 = (2 - x)(2 + x) $.
So numerator: $ (2-x)(2+x) = -(x-2)(2+x) $.
Thus,
$$ L = \lim_{x \to 2} \frac{-(x-2)(2+x)}{(x-2)(\sqrt{9-x^2} + \sqrt{5})} = \lim_{x \to 2} \frac{-(2+x)}{\sqrt{9-x^2} + \sqrt{5}} $$As $ x \to 2 $, this becomes:
$$ L = \frac{-(2+2)}{\sqrt{9-4} + \sqrt{5}} = \frac{-4}{\sqrt{5} + \sqrt{5}} = \frac{-4}{2\sqrt{5}} = \frac{-2}{\sqrt{5}} $$Value required: $ \sqrt{5} \times L = \sqrt{5} \times \left(-\frac{2}{\sqrt{5}}\right) = -2 $.
Answer: $-2$
Question 1: The left-hand limit (LHL) and right-hand limit (RHL) of the given function $ f(x) $ exist at $ x = 0 $ and are equal to each other. Options:
- TRUE
- FALSE
Solution ๐:
Let’s analyze the piecewise function:
$$ f(x) = \begin{cases} [x+1] & -3 \le x < 0 \\ 0 & x = 0 \\ \{x+1\} & 0 < x \le 3 \end{cases} $$- The left-hand limit as $ x \to 0^- $ is $ [0+1] = [^1] = 1 $.
- The right-hand limit as $ x \to 0^+ $ is $ {0+1} = {1} = 0 $.
So LHL โ RHL, both exist but are not equal.
Answer: FALSE
Question 2: The function $ f(x) $ is continuous at $ x = 0 $. Options:
- TRUE
- FALSE
Solution ๐:
From above:
- LHL at $ x=0 $ is 1.
- RHL at $ x=0 $ is 0.
- $ f(0) = 0 $.
Since LHL โ RHL, and even RHL $ = f(0) $, but for continuity both limits must be equal and equal to $ f(0) $.
Answer: FALSE
Solution ๐:
Discontinuity can occur at endpoints and where the floor or fractional part โjumpsโ, i.e., at integers for the floor function and fractional part.
- In (-3, 0): Discontinuity at $ x = -2, -1, 0 $ (from greatest integer function).
- In (0, 3): Discontinuity at $ x = 0, 1, 2, 3 $ (from fractional part function).
- So, discontinuities occur at $ x = -2, -1, 0, 1, 2 $.
Total: 5 points
Answer: 5
Question 4: Left-hand derivative (LHD) and right-hand derivative (RHD) of the function $ f(x) = 4x^5 + x^2|x+1| + x + 5 $ exist and are equal at $ x = -1 $. Options:
- TRUE
- FALSE
Solution ๐:
At $ x = -1 $, the derivative of $ |x+1| $ changes abruptly:
- For $ x < -1 $: $ |x+1| = -(x+1) $
- For $ x > -1 $: $ |x+1| = (x+1) $
Their derivatives at $ x = -1 $ are different, hence LHD โ RHD.
Answer: FALSE
Question 5: The function $ |x+1| f(x) $ is continuous at $ x = -1 $. Options:
- TRUE
- FALSE
Solution ๐:
At $ x = -1 $: $ |x+1| = 0 $, so $ |x+1| f(x) = 0 $ for any $ f(x) $. Both side-limits as $ x \to -1 $ approach 0.
Answer: TRUE
Question 6: The derivative of the function $ f $ at $ x=0 $ is 1. Options:
- TRUE
- FALSE
Solution ๐:
From earlier:
- LHL ($ x = 0^- $): Slope from left = derivative of [x+1] = 0 almost everywhere (except at discontinuities), but as left from $[-3,0)$, $[x+1]$ is constant near 0 so derivative = 0.
- RHL ($ x=0^+ $): Derivative of $ {x+1} $ with respect to $ x $ is 1 for non-integer $ x $, since $ {x+1} = x+1 - [x+1] $ and derivative of $ x+1 $ is 1.
- But at $ x=0 $, function is not continuous or differentiable; so derivative does not exist.
Answer: FALSE
Question 7: Calculate the limit of the function:
$$ f(x) = \begin{cases} x^2 - 2x + 4 & x \ge 0 \\ e^{x^2} + 3 & x < 0 \end{cases} $$At $ x = 0 $.
Solution ๐:
Left-hand limit: As $ x \to 0^- $, $ e^{(0)^2} + 3 = 1 + 3 = 4 $.
Right-hand limit: As $ x \to 0^+ $, $ (0)^2 - 2 \times 0 + 4 = 4 $.
Both limits = 4
Answer: 4
Question 8: Calculate the limit of the following function at $ x=1 $:
$$ f(x) = \frac{x^4 - 3x^3 + 2}{x^4 - 5x^3 + 3x^2 + 1} $$Solution ๐:
Substitute $ x=1 $: Numerator: $ 1^4 - 3 \cdot 1^3 + 2 = 1 - 3 + 2 = 0 $ Denominator: $ 1^4 - 5 \cdot 1^3 + 3 \cdot 1^2 + 1 = 1 - 5 + 3 + 1=0 $
We get $ 0/0 $, so use L’Hospital’s Rule: Differentiate numerator and denominator:
Numerator derivative: $ 4x^3 - 9x^2 $, at $ x=1 $: $ 4-9 = -5 $ Denominator derivative: $ 4x^3 - 15x^2 + 6x $, at $ x=1 $: $ 4-15+6= -5 $ So, limit = $ \frac{-5}{-5} = 1 $
Answer: 1
Question 1: Find the limit of the following sequence:
$$ \{a_n\}\ \text{such that}\ a_n = \frac{6 + 6 \cdot 2^2 + 6 \cdot 3^2 + \dots + 6 \cdot n^2}{\sqrt{4n^6 + 5}} $$Step-by-step Solution ๐งฎ:
1๏ธโฃ Numerator simplification: $6 + 6 \cdot 2^2 + 6 \cdot 3^2 + \dots + 6 \cdot n^2 = 6 \sum_{k=1}^{n} k^2$ Recall: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
So, numerator = $6 \cdot \frac{n(n+1)(2n+1)}{6} = n(n+1)(2n+1)$
2๏ธโฃ Denominator: $\sqrt{4n^6 + 5}$
3๏ธโฃ Limit:
$$ \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{\sqrt{4n^6 + 5}} $$The numerator is a cubic polynomial: $n(n+1)(2n+1) \approx 2n^3$ for large $n$
Denominator: $\sqrt{4n^6 + 5} \approx 2n^3$
So the limit is:
$$ \lim_{n \to \infty} \frac{2n^3}{2n^3} = 1 $$Final Answer: 1
Question 2: Find the limit of the following sequence:
$$ \{a_n\} \text{ such that } a_n = \frac{100n^2 - 11}{100n^3 + 7} $$Step-by-step Solution ๐งฎ:
1๏ธโฃ For large $ n $, the highest power dominates.
- Numerator: $100n^2 - 11 \approx 100n^2$
- Denominator: $100n^3 + 7 \approx 100n^3$
2๏ธโฃ So,
$$ \lim_{n \to \infty} \frac{100n^2}{100n^3} = \lim_{n \to \infty} \frac{1}{n} = 0 $$Final Answer: 0
Question 3: Is the statement True or False? Let $L(x)$ be the linear approximation to $f(x) = xe^x - 1$ at the point $a$ such that $f(a) = L(a)$ and the slope of the graph of $L$ is $f’(a)$. Then $L(x) = e^a(a+1)x - a^2 e^a - 1$. Options:
- TRUE
- FALSE
Step-by-step Solution ๐ง๐ซ:
- Linear approximation at $a$: $L(x) = f(a) + f’(a)(x - a)$
Given $f(x) = x e^x - 1$
- $f(a) = a e^a - 1$
- $f’(x) = e^x + x e^x$, so $f’(a) = e^a + a e^a = e^a(a+1)$
Thus,
$$ L(x) = a e^a - 1 + e^a(a+1)(x - a) $$Expand:
$$ = a e^a - 1 + e^a(a+1)x - e^a(a+1)a = e^a(a+1)x - e^a a(a+1) + a e^a - 1 = e^a(a+1)x - e^a a^2 - 1 $$Which matches the given formula.
Final Answer: TRUE
Step-by-step Solution ๐ฆ:
- The tangent at $ (3,0) $ passes through $ (5,4) $.
- Slope of tangent = $ m = \frac{4-0}{5-3} = 2 $
By definition, the slope of the tangent to the graph at $ x=3 $ is $ f’(3) $.
Final Answer: 2
Question 5: Given: Let $ f(x) = \sqrt{x} $ and $ g(x) = \sqrt{3-x} $. With the compositions and their corresponding functions and domains in table form, answer the following:
Match the following:
i) $ f \circ g $ ii) $ g \circ f $ iii) $ f \circ f $ iv) $ g \circ g $
with
a) $ \sqrt{3 - \sqrt{x}} $ b) $ \sqrt[^1]{x} $ c) $ \sqrt{3 - \sqrt{3-x}} $ d) $ \sqrt{3 - x} $
And domains:
- $ [0, \infty) $
- $ [ -6, 3 ] $
- $ ( -\infty, 3 ] $
- $ $
Choose the correct option:
- i) โ d) โ 3)
- ii) โ a) โ 4)
- iii) โ b) โ 1)
Step-by-step Solution ๐:
Let’s match:
- $ f \circ g (x) = f(g(x)) = \sqrt{\sqrt{3-x}} $ โ $ \sqrt{3-x} = d $, domain for $ 3-x \geq 0 \implies x \leq 3 $, so domain is $ ( -\infty, 3 ] $.
- $ g \circ f (x) = g(f(x)) = \sqrt{3-\sqrt{x}} $, which is $ a $, and the inside must be $ \geq 0 $: $ 3-\sqrt{x} \geq 0 \implies x \leq 9 $, so domain is $ $.
- $ f \circ f (x) = f(f(x)) = \sqrt{\sqrt{x}} = \sqrt[^1]{x} $, which is $ b $, and $ x \geq 0 $, so domain is $ [0, \infty) $.
So, the matching is:
- i) โ d) โ 3)
- ii) โ a) โ 4)
- iii) โ b) โ 1)
Answers: i) โ d) โ 3) ii) โ a) โ 4) iii) โ b) โ 1)