QUIZ 2 Foundational

QUIZ 2 Foundational


4 Aug 2024


Question 1: Which of the following statements is/are true about the function $ f(x) = |x^2 - 4x + 3| + 17 $? Options: A. $ f $ is defined only for all $ x \in \mathbb{N} $. B. $ f $ is a bijective function. C. The range of $ f $ is $[0, \infty)$. D. The minimum value of $ f $ is 17.

Solution ๐Ÿ“: Let’s analyze $ f(x) = |x^2 - 4x + 3| + 17 $.

1๏ธโƒฃ The quadratic $ x^2 - 4x + 3 = (x-1)(x-3) $ can take any real value and is defined for all real $ x $. So, option A is FALSE.

2๏ธโƒฃ The function involves an absolute value, which is not one-to-one (e.g., $ x = a $ and $ x = b $ can give the same value due to the absolute value), hence not bijective. Option B is FALSE.

3๏ธโƒฃ The minimum of $ |x^2 - 4x + 3| $ is 0 (attained when $ x^2 - 4x + 3 = 0,\ x=1,3 $), so minimum value of $ f(x) $ is 17, and the function takes all values $ f(x) \geq 17 $. So, the range is $[17, \infty)$, not $[0, \infty)$. Option C is FALSE.

4๏ธโƒฃ As derived above, the minimum value is 17, attained at $ x = 1, 3 $. Option D is TRUE.

Answer: The minimum value of $ f $ is 17.

Question 2: Find the domain of the inverse function of $ y = x^3 - 1 $. Options: A. $ \mathbb{R} $ B. $ \mathbb{R} \setminus {1} $ C. $ [1, \infty) $ D. $ \mathbb{R}\setminus [1, \infty) $

Solution ๐Ÿ“: $ y = x^3 - 1 $ is a cubic function, which is bijective and continuous over $ \mathbb{R} $; it has an inverse $ x = \sqrt[^1]{y+1} $, which is also defined for all $ y \in \mathbb{R} $.

So, the domain of the inverse function is all real numbers $ \mathbb{R} $.

Answer: $\mathbb{R}$

Question 3: Choose the set of correct options regarding logarithms: Options: A. If $ 0 < b < 1 $ and $ 0 < x < 1 $ then $ \log_b x < 0 $ B. If $ 0 < b < 1, 0 < x < 1 $, and $ x > b $ then $ \log_b x > 1 $ C. If $ 0 < b < 1 $ and $ 0 < x < y $ then $ \log_b x > \log_b y $ D. $ \log_{10}100 $ is a rational number.

Solution ๐Ÿ“: Let’s analyze each option:

A. For $ 0 < b < 1 $, the logarithm function is decreasing. For $ 0 < x < 1 $, $ \log_b x > 0 $, so A is FALSE.

B. For $ 0 < b < 1, 0 < x < 1 $, and $ x > b $, $ \log_b x $ will not necessarily be greater than 1. FALSE.

C. For $ 0 < b < 1 $ and $ x < y $, $ \log_b x > \log_b y $ because the function is decreasing when base is between 0 and 1. TRUE.

D. $ \log_{10} 100 = 2 $, which is rational. TRUE.

Answers: C and D are correct.

Question 4: Given four curves, select the correct options: A. There are at least two points between -4 and 4, where the derivatives of the function corresponding to Curve 1 are equal. B. At the origin the derivative of the function corresponding to Curve 2 does not exist. C. The derivative of the function corresponding to Curve 3, at the origin and point (-2,0), are equal. D. The derivative of the function corresponding to Curve 4 does not exist at any point.

Solution ๐Ÿ“: Curve 1 is continuous and differentiable, so Rolle’s theorem applies. There must be points where the derivatives are equal between -4 and 4. TRUE.

Curve 2 has a cusp (sharp corner) at the origin, so the derivative does not exist there. TRUE.

Curve 3: The derivative at the origin and (-2,0) are not necessarily equal. FALSE.

Curve 4 is a constant function (horizontal line), so the derivative exists everywhere (and is zero). FALSE.

Answers: A and B are correct.

Question 5: If $ m^{\log_3 2} + 2^{\log_3 m} = 8 $, find the value of $ m $.

Solution ๐Ÿ“: Let $ x = \log_3 m $, so $ m = 3^x $.

Then, $ m^{\log_3 2} = (3^x)^{\log_3 2} = 2^x $ And, $ 2^{\log_3 m} = 2^{x} $

So, $ m^{\log_3 2} + 2^{\log_3 m} = 2^x + 2^x = 2 \cdot 2^x = 8 \implies 2^{x+1} = 8 \implies 2^{x+1} = 2^3 \implies x+1=3 \implies x=2 $.

Therefore, $ m = 3^{2} = 9 $.

Answer: $ m = 9 $

Question 6: If $ f(x) = \sqrt{9 - x^2} $, then find the value of $ \sqrt{5} \times \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} $.

Solution ๐Ÿ“: First, $ f(x) = \sqrt{9 - x^2} $.

Calculate $ f(2) = \sqrt{9 - 4} = \sqrt{5} $.

We need $ \lim_{x \to 2} \frac{\sqrt{9-x^2} - \sqrt{5}}{x-2} $.

Let $ L = \lim_{x \to 2} \frac{\sqrt{9-x^2} - \sqrt{5}}{x-2} $.

Multiply numerator and denominator by the conjugate:

$$ L = \lim_{x \to 2} \frac{(\sqrt{9-x^2} - \sqrt{5})(\sqrt{9-x^2} + \sqrt{5})}{(x-2)(\sqrt{9-x^2} + \sqrt{5})} = \lim_{x \to 2} \frac{9-x^2 - 5}{(x-2)(\sqrt{9-x^2} + \sqrt{5})} = \lim_{x \to 2} \frac{4 - x^2}{(x-2)(\sqrt{9-x^2} + \sqrt{5})} $$

But $ 4 - x^2 = (2 - x)(2 + x) $.

So numerator: $ (2-x)(2+x) = -(x-2)(2+x) $.

Thus,

$$ L = \lim_{x \to 2} \frac{-(x-2)(2+x)}{(x-2)(\sqrt{9-x^2} + \sqrt{5})} = \lim_{x \to 2} \frac{-(2+x)}{\sqrt{9-x^2} + \sqrt{5}} $$

As $ x \to 2 $, this becomes:

$$ L = \frac{-(2+2)}{\sqrt{9-4} + \sqrt{5}} = \frac{-4}{\sqrt{5} + \sqrt{5}} = \frac{-4}{2\sqrt{5}} = \frac{-2}{\sqrt{5}} $$

Value required: $ \sqrt{5} \times L = \sqrt{5} \times \left(-\frac{2}{\sqrt{5}}\right) = -2 $.

Answer: $-2$

Question 1: The left-hand limit (LHL) and right-hand limit (RHL) of the given function $ f(x) $ exist at $ x = 0 $ and are equal to each other. Options:

  • TRUE
  • FALSE

Solution ๐Ÿ“:

Let’s analyze the piecewise function:

$$ f(x) = \begin{cases} [x+1] & -3 \le x < 0 \\ 0 & x = 0 \\ \{x+1\} & 0 < x \le 3 \end{cases} $$
  • The left-hand limit as $ x \to 0^- $ is $ [0+1] = [^1] = 1 $.
  • The right-hand limit as $ x \to 0^+ $ is $ {0+1} = {1} = 0 $.

So LHL โ‰  RHL, both exist but are not equal.

Answer: FALSE

Question 2: The function $ f(x) $ is continuous at $ x = 0 $. Options:

  • TRUE
  • FALSE

Solution ๐Ÿ“:

From above:

  • LHL at $ x=0 $ is 1.
  • RHL at $ x=0 $ is 0.
  • $ f(0) = 0 $.

Since LHL โ‰  RHL, and even RHL $ = f(0) $, but for continuity both limits must be equal and equal to $ f(0) $.

Answer: FALSE

Question 3: Find the total number of points in $ [-3, 3] $ at which $ f(x) $ is not continuous.

Solution ๐Ÿ“:

Discontinuity can occur at endpoints and where the floor or fractional part โ€œjumpsโ€, i.e., at integers for the floor function and fractional part.

  • In (-3, 0): Discontinuity at $ x = -2, -1, 0 $ (from greatest integer function).
  • In (0, 3): Discontinuity at $ x = 0, 1, 2, 3 $ (from fractional part function).
  • So, discontinuities occur at $ x = -2, -1, 0, 1, 2 $.

Total: 5 points

Answer: 5

Question 4: Left-hand derivative (LHD) and right-hand derivative (RHD) of the function $ f(x) = 4x^5 + x^2|x+1| + x + 5 $ exist and are equal at $ x = -1 $. Options:

  • TRUE
  • FALSE

Solution ๐Ÿ“:

At $ x = -1 $, the derivative of $ |x+1| $ changes abruptly:

  • For $ x < -1 $: $ |x+1| = -(x+1) $
  • For $ x > -1 $: $ |x+1| = (x+1) $

Their derivatives at $ x = -1 $ are different, hence LHD โ‰  RHD.

Answer: FALSE

Question 5: The function $ |x+1| f(x) $ is continuous at $ x = -1 $. Options:

  • TRUE
  • FALSE

Solution ๐Ÿ“:

At $ x = -1 $: $ |x+1| = 0 $, so $ |x+1| f(x) = 0 $ for any $ f(x) $. Both side-limits as $ x \to -1 $ approach 0.

Answer: TRUE

Question 6: The derivative of the function $ f $ at $ x=0 $ is 1. Options:

  • TRUE
  • FALSE

Solution ๐Ÿ“:

From earlier:

  • LHL ($ x = 0^- $): Slope from left = derivative of [x+1] = 0 almost everywhere (except at discontinuities), but as left from $[-3,0)$, $[x+1]$ is constant near 0 so derivative = 0.
  • RHL ($ x=0^+ $): Derivative of $ {x+1} $ with respect to $ x $ is 1 for non-integer $ x $, since $ {x+1} = x+1 - [x+1] $ and derivative of $ x+1 $ is 1.
  • But at $ x=0 $, function is not continuous or differentiable; so derivative does not exist.

Answer: FALSE

Question 7: Calculate the limit of the function:

$$ f(x) = \begin{cases} x^2 - 2x + 4 & x \ge 0 \\ e^{x^2} + 3 & x < 0 \end{cases} $$

At $ x = 0 $.

Solution ๐Ÿ“:

Left-hand limit: As $ x \to 0^- $, $ e^{(0)^2} + 3 = 1 + 3 = 4 $.

Right-hand limit: As $ x \to 0^+ $, $ (0)^2 - 2 \times 0 + 4 = 4 $.

Both limits = 4

Answer: 4

Question 8: Calculate the limit of the following function at $ x=1 $:

$$ f(x) = \frac{x^4 - 3x^3 + 2}{x^4 - 5x^3 + 3x^2 + 1} $$

Solution ๐Ÿ“:

Substitute $ x=1 $: Numerator: $ 1^4 - 3 \cdot 1^3 + 2 = 1 - 3 + 2 = 0 $ Denominator: $ 1^4 - 5 \cdot 1^3 + 3 \cdot 1^2 + 1 = 1 - 5 + 3 + 1=0 $

We get $ 0/0 $, so use L’Hospital’s Rule: Differentiate numerator and denominator:

Numerator derivative: $ 4x^3 - 9x^2 $, at $ x=1 $: $ 4-9 = -5 $ Denominator derivative: $ 4x^3 - 15x^2 + 6x $, at $ x=1 $: $ 4-15+6= -5 $ So, limit = $ \frac{-5}{-5} = 1 $

Answer: 1

โ‚

Question 1: Find the limit of the following sequence:

$$ \{a_n\}\ \text{such that}\ a_n = \frac{6 + 6 \cdot 2^2 + 6 \cdot 3^2 + \dots + 6 \cdot n^2}{\sqrt{4n^6 + 5}} $$

Step-by-step Solution ๐Ÿงฎ:

1๏ธโƒฃ Numerator simplification: $6 + 6 \cdot 2^2 + 6 \cdot 3^2 + \dots + 6 \cdot n^2 = 6 \sum_{k=1}^{n} k^2$ Recall: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

So, numerator = $6 \cdot \frac{n(n+1)(2n+1)}{6} = n(n+1)(2n+1)$

2๏ธโƒฃ Denominator: $\sqrt{4n^6 + 5}$

3๏ธโƒฃ Limit:

$$ \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{\sqrt{4n^6 + 5}} $$

The numerator is a cubic polynomial: $n(n+1)(2n+1) \approx 2n^3$ for large $n$

Denominator: $\sqrt{4n^6 + 5} \approx 2n^3$

So the limit is:

$$ \lim_{n \to \infty} \frac{2n^3}{2n^3} = 1 $$

Final Answer: 1

Question 2: Find the limit of the following sequence:

$$ \{a_n\} \text{ such that } a_n = \frac{100n^2 - 11}{100n^3 + 7} $$

Step-by-step Solution ๐Ÿงฎ:

1๏ธโƒฃ For large $ n $, the highest power dominates.

  • Numerator: $100n^2 - 11 \approx 100n^2$
  • Denominator: $100n^3 + 7 \approx 100n^3$

2๏ธโƒฃ So,

$$ \lim_{n \to \infty} \frac{100n^2}{100n^3} = \lim_{n \to \infty} \frac{1}{n} = 0 $$

Final Answer: 0

Question 3: Is the statement True or False? Let $L(x)$ be the linear approximation to $f(x) = xe^x - 1$ at the point $a$ such that $f(a) = L(a)$ and the slope of the graph of $L$ is $f’(a)$. Then $L(x) = e^a(a+1)x - a^2 e^a - 1$. Options:

  • TRUE
  • FALSE

Step-by-step Solution ๐Ÿง‘๐Ÿซ:

  • Linear approximation at $a$: $L(x) = f(a) + f’(a)(x - a)$

Given $f(x) = x e^x - 1$

  • $f(a) = a e^a - 1$
  • $f’(x) = e^x + x e^x$, so $f’(a) = e^a + a e^a = e^a(a+1)$

Thus,

$$ L(x) = a e^a - 1 + e^a(a+1)(x - a) $$

Expand:

$$ = a e^a - 1 + e^a(a+1)x - e^a(a+1)a = e^a(a+1)x - e^a a(a+1) + a e^a - 1 = e^a(a+1)x - e^a a^2 - 1 $$

Which matches the given formula.

Final Answer: TRUE

Question 4: Let $ f $ be a differentiable function at $ x=3 $. The tangent line to the graph of the function $ f $ at the point $ (3,0) $, passes through the point $ (5,4) $. What will be the value of $ f’(3) $?

Step-by-step Solution ๐Ÿšฆ:

  • The tangent at $ (3,0) $ passes through $ (5,4) $.
  • Slope of tangent = $ m = \frac{4-0}{5-3} = 2 $

By definition, the slope of the tangent to the graph at $ x=3 $ is $ f’(3) $.

Final Answer: 2

Question 5: Given: Let $ f(x) = \sqrt{x} $ and $ g(x) = \sqrt{3-x} $. With the compositions and their corresponding functions and domains in table form, answer the following:

Match the following:

i) $ f \circ g $ ii) $ g \circ f $ iii) $ f \circ f $ iv) $ g \circ g $

with

a) $ \sqrt{3 - \sqrt{x}} $ b) $ \sqrt[^1]{x} $ c) $ \sqrt{3 - \sqrt{3-x}} $ d) $ \sqrt{3 - x} $

And domains:

  1. $ [0, \infty) $
  2. $ [ -6, 3 ] $
  3. $ ( -\infty, 3 ] $
  4. $ $

Choose the correct option:

  1. i) โ€“ d) โ€“ 3)
  2. ii) โ€“ a) โ€“ 4)
  3. iii) โ€“ b) โ€“ 1)

Step-by-step Solution ๐Ÿ“:

Let’s match:

  • $ f \circ g (x) = f(g(x)) = \sqrt{\sqrt{3-x}} $ โ†’ $ \sqrt{3-x} = d $, domain for $ 3-x \geq 0 \implies x \leq 3 $, so domain is $ ( -\infty, 3 ] $.
  • $ g \circ f (x) = g(f(x)) = \sqrt{3-\sqrt{x}} $, which is $ a $, and the inside must be $ \geq 0 $: $ 3-\sqrt{x} \geq 0 \implies x \leq 9 $, so domain is $ $.
  • $ f \circ f (x) = f(f(x)) = \sqrt{\sqrt{x}} = \sqrt[^1]{x} $, which is $ b $, and $ x \geq 0 $, so domain is $ [0, \infty) $.

So, the matching is:

  • i) โ€“ d) โ€“ 3)
  • ii) โ€“ a) โ€“ 4)
  • iii) โ€“ b) โ€“ 1)

Answers: i) โ€“ d) โ€“ 3) ii) โ€“ a) โ€“ 4) iii) โ€“ b) โ€“ 1)

โ‚