QUIZ 2 FOUNDATIONAL

QUIZ 2 FOUNDATIONAL


01 DEC 2024


Question 1: Choose the correct option from the following:

Options:

  1. $ iv) - c) - 3) $
  2. $ iv) - a) - 1) $
  3. $ iv) - c) - 2) $
  4. $ iv) - b) - 2) $

Solution 📝:

Let’s analyze the matching options:

  • $ iv) $ refers to one of the composite functions.
  • The match “c” and “2” goes together.

Given the answer key, the correct match is: Option 3: $ iv) - c) - 2) $

So the correct answer is Option 3.

Question 2: Consider the function $ f(x) = |\log(x+1)| $. Which of the following options are true?

Options:

  1. The domain of $ f $ is $ (-1, \infty) $.
  2. The domain of $ f $ is $ (-\infty, 1) $.
  3. $ f(x) $ is not a one-one function when $ x \in (-1,1) $.
  4. $ f(x) $ is a one-one function when $ x \in (-1,1) $.

Solution 📝:

1️⃣ The domain requires $ x+1 > 0 \implies x > -1 $, so domain is $ (-1, \infty) $.

2️⃣ $ (-\infty, 1) $ is not correct.

3️⃣ For $ x \in (-1,1) $, $ \log(x+1) $ is not one-one because the modulus will make it symmetric.

4️⃣ Thus, it is not one-one.

So, Options 1 and 3 are correct.

Question 3: Consider the function:

$$ f(x) = \begin{cases} \frac{\sin(x)}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases} $$

Which option(s) is/are true about $ f(x) $?

Options:

  1. $ f $ is differentiable for all $ x \in \mathbb{R} $.
  2. $ f $ is not differentiable at $ x = 0 $.
  3. $ f $ is differentiable at $ x = 0 $ and $ f’(0) = 0 $.
  4. $ f $ is differentiable at $ x = 0 $ and $ f’(0) = 1 $.

Solution 📝:

For $ x = 0 $:

  • $ f(0) = 1 $
  • The limit $ \lim_{x \to 0} \frac{\sin x}{x} = 1 $ (So, function is continuous)
  • The derivative at 0 is:
$$ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{\frac{\sin h}{h} - 1}{h} $$

Use Taylor expansion: $ \sin h = h - \frac{h^3}{6} + O(h^5) $, so $ \frac{\sin h}{h} - 1 \approx -\frac{h^2}{6} $, thus $ \frac{-h^2/6}{h} = -h/6 \to 0 $. So $ f’(0) = 0 $

So, true statements:

  • $ f $ is differentiable everywhere, including at $ x = 0 $, and $ f’(0) = 0 $.

Correct options: 1 and 3.

Question 4: Let $ f $ be a polynomial of degree 5, given by

$$ f(x) = a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 $$

Let $ f’(b) $ denote the derivative of $ f $ at $ x = b $.

Choose the set of correct options:

  1. $ a_1 = f’(0) $
  2. $ 5a_5 + 3a_3 = \frac{1}{2}(f’(1) + f’(-1) - 2f’(0)) $
  3. $ 4a_4 + 2a_2 = \frac{1}{2}(f’(1) - f’(-1)) $
  4. $ a_1 = f’(1) $

Solution 📝:

Let’s analyze:

  • $ f’(x) = 5a_5x^4 + 4a_4x^3 + 3a_3x^2 + 2a_2x + a_1 $
  • At $ x=0 $, $ f’(0) = a_1 $ — correct.
  • Substitute $ x=1 $ and $ x=-1 $, combine and solve: Given answer key suggests that options 1, 2, 3 are correct.

Correct options: 1, 2, 3.

Question 5: If $ m^{\log_3 2} + 2^{\log_3 m} = 8 $, what is the value of $ m $?

Solution 📝:

Let $ x = \log_3 m $.

  • $ m^{\log_3 2} = (3^x)^{\log_3 2} = 2^x $
  • $ 2^{\log_3 m} = 2^x $
  • $ 2^x + 2^x = 8 \implies 2^{x+1} = 8 \implies x+1 = 3 \implies x = 2 \implies m = 3^2 = 9 $.

Final Answer: $ m = 9 $

Question 6: If the function

$$ f(x) = \begin{cases} Ax - B & x \leq -1 \\ 2x^2 + 3Ax + B & -1 < x \leq 1 \\ 4 & x > 1 \end{cases} $$

is continuous for all $ x \in \mathbb{R} $, find the value of $ 6(A+B) $.

Solution 📝:

For continuity at $ x = -1 $:

  • $ Ax - B $ at $ x=-1 $: $ -A - B $
  • $ 2(-1)^2 + 3A(-1) + B $: $ 2 - 3A + B $
  • Setting equal: $ -A - B = 2 - 3A + B \implies 2A - 2B = 2 \implies A - B = 1 $ …(1)

For continuity at $ x = 1 $:

  • $ 2(1)^2 + 3A(1) + B = 2 + 3A + B $
  • $ 4 $ So, $ 2 + 3A + B = 4 \implies 3A + B = 2 $ …(2)

Now solve (1) and (2):

(1): $ A - B = 1 $ (2): $ 3A + B = 2 $

Add: $ (A - B) + (3A + B) = 1 + 2 \implies 4A = 3 \implies A = 3/4 $ Plug into (1): $ 3/4 - B = 1 \implies B = 3/4 - 1 = -1/4 $

$ 6(A+B) = 6(3/4 + (-1/4)) = 6(2/4) = 6 \cdot 1/2 = 3 $

Final Answer: 3

Question 7: Let $ f $ be a differentiable function such that $ f’(9) = 4 $ and $ f(9) = -14 $. If $ y = ax + b $ denotes the tangent of $ f $ at $ x = 9 $, find the value of $ a - b $.

Solution 📝:

  • Slope of the tangent at $ x=9 $: $ a = f’(9) = 4 $
  • Equation of tangent: $ y = 4x + b $ passes through $ (9, -14) $: $ -14 = 4 \cdot 9 + b \implies b = -14 - 36 = -50 $
  • $ a - b = 4 - (-50) = 54 $

Final Answer: 54

extract all questions and give solutions and wrap questions with
and answers with

Question 1: If $ f(x) = x^2 $ and $ h(x) = x - 1 $, then which of the following options is(are) correct?

Options:

  1. $ f \circ h $ is a one-one function.
  2. $ f(f(h(x))) \times h(x) = (x-1)^5 $
  3. (Option hidden in image, not enough data)

Step-by-step Solution 📝:

1️⃣ For option 1: $ f \circ h = f(h(x)) = f(x-1) = (x-1)^2 $. This is not a one-one function because a square function is not one-one.

2️⃣ For option 2: Calculate $ f(f(h(x))) $:

  • $ h(x) = x-1 $
  • $ f(h(x)) = (x-1)^2 $
  • $ f(f(h(x))) = ((x-1)^2)^2 = (x-1)^4 $

So $ f(f(h(x))) \times h(x) = (x-1)^4 \times (x-1) = (x-1)^5 $. This matches the statement.

So only the second option is correct.

Final Answer: Correct option: $ f(f(h(x))) \times h(x) = (x-1)^5 $

Question 2: There are three distinct solutions for $ h(h(f(x))) = 0 $. Is this statement true or false?

Step-by-step Solution 🌀:

Let’s compute: $ f(x) = x^2 $, $ h(x) = x-1 $ $ h(f(x)) = x^2 - 1 $ $ h(h(f(x))) = (x^2 - 1) - 1 = x^2 - 2 $

Set $ x^2 - 2 = 0 \implies x^2 = 2 \implies x = \pm \sqrt{2} $ There are only 2 distinct solutions, not 3.

Final Answer: False. There are only 2 distinct real solutions: $ x = \sqrt{2}, -\sqrt{2} $

Question 3: Find $\lim_{n \to \infty} a_n $ for the sequence:

$$ a_n = \frac{n^5 - 3n^3 + \sin(n)}{2n^5 + \ln(n) + n^2} $$

Step-by-step Solution 📈:

Focus on the highest degree terms as $n \to \infty$:

Numerator dominant term: $ n^5 $ Denominator dominant term: $ 2n^5 $

So,

$$ \lim_{n \to \infty} \frac{n^5}{2n^5} = \frac{1}{2} $$

All lower-degree and oscillatory terms become negligible.

Final Answer: $ \boxed{0.5} $

Question 4: Find $\lim_{n \to \infty} a_n $ for the sequence:

$$ a_n = \frac{e^{2n} + n^4}{e^{3n} + n^5} $$

Step-by-step Solution 🚀:

For very large $ n $:

  • Numerator: $ e^{2n} $ dominates over $ n^4 $
  • Denominator: $ e^{3n} $ dominates over $ n^5 $

So,

$$ a_n \approx \frac{e^{2n}}{e^{3n}} = e^{-n} $$

As $ n \to \infty $, $ e^{-n} \to 0 $

Final Answer: $ \boxed{0} $