Graded Assignment 11

Graded Assignment 11

Exercise Questions โ“

alt text alt text alt text alt text

alt text alt text

SOlutions ๐ŸŸฉ

Here are the detailed solutions for the Calculus and Statistics questions provided in the images, organized by topic.

Topic 1: Multivariable Calculus (Differentiation & Optimization)

Question 1

Problem: Find the correct second partial derivative $f_{xx}$ for $f(x, y, z) = x^2z + y^3e^{xy} + \sin(xyz)$.

Concept: Partial Differentiation To find $f_{xx}$, we first differentiate $f$ with respect to $x$ (treating $y, z$ as constants), and then differentiate the result by $x$ again.

Step 1: First Derivative ($f_x$)

  • $\frac{\partial}{\partial x}(x^2z) = 2xz$
  • $\frac{\partial}{\partial x}(y^3e^{xy}) = y^3 \cdot \frac{\partial}{\partial x}(e^{xy}) = y^3 \cdot (ye^{xy}) = y^4e^{xy}$
  • $\frac{\partial}{\partial x}(\sin(xyz)) = \cos(xyz) \cdot \frac{\partial}{\partial x}(xyz) = yz\cos(xyz)$
$$f_x = 2xz + y^4e^{xy} + yz\cos(xyz)$$

Step 2: Second Derivative ($f_{xx}$)

  • $\frac{\partial}{\partial x}(2xz) = 2z$
  • $\frac{\partial}{\partial x}(y^4e^{xy}) = y^4 \cdot (ye^{xy}) = y^5e^{xy}$
  • $\frac{\partial}{\partial x}(yz\cos(xyz)) = yz \cdot (-\sin(xyz) \cdot yz) = -y^2z^2\sin(xyz)$
$$f_{xx} = 2z + y^5e^{xy} - (yz)^2\sin(xyz)$$

Answer Option: $f_{xx} = 2z + y^5e^{xy} - (yz)^2 \sin(xyz)$ (Second Option)

Question 2

Problem: Number of critical points of $f(x, y, z) = e^x(x^2 - y^2 - 2z^2)$.

Concept: Critical Points Critical points occur where the gradient is zero ($\nabla f = \vec{0}$). We set partial derivatives $f_x, f_y, f_z$ to 0.

Step 1: Partial Derivatives

  • $f_y = e^x(-2y)$. Setting $f_y = 0 \implies y=0$.
  • $f_z = e^x(-4z)$. Setting $f_z = 0 \implies z=0$.
  • $f_x = \frac{\partial}{\partial x}(e^x) \cdot (x^2 - y^2 - 2z^2) + e^x \cdot \frac{\partial}{\partial x}(x^2 - y^2 - 2z^2)$ $f_x = e^x(x^2 - y^2 - 2z^2) + e^x(2x) = e^x(x^2 + 2x - y^2 - 2z^2)$.

Step 2: Solve System Substitute $y=0, z=0$ into $f_x=0$:

$$e^x(x^2 + 2x - 0 - 0) = 0$$

Since $e^x \neq 0$, we solve $x^2 + 2x = 0$:

$$x(x+2) = 0 \implies x = 0, x = -2$$

Step 3: Count Points The critical points are $(0, 0, 0)$ and $(-2, 0, 0)$.

Answer: 2

Question 3

Problem: Analyze $f(x, y) = \sqrt{x^2 + y^2}$ at $(0,0)$.

Concept: Geometry of the Cone This function represents an inverted cone with the tip at the origin.

  • Global Minimum: Since $\sqrt{\dots} \ge 0$ and $f(0,0)=0$, the point $(0,0)$ is the absolute lowest point.
  • Differentiability: The cone has a sharp “cusp” or point at the origin. It is continuous but not differentiable at $(0,0)$. (Imagine trying to place a tangent plane on the tip of a sharp pencilโ€”it wobbles).

Correct Statements:

  • $(0,0)$ is a local minimum of $f$.
  • $(0,0)$ is a global minimum of $f$.
  • $(0,0)$ is the only critical point (where derivative is undefined).

Answer Selection: $(0,0)$ is a global minimum of $f$.

Question 4

Problem: Find the minimum surface area of a rectangular box with Volume = 1000.

Concept: Optimization For a rectangular box with fixed volume, the surface area is minimized when the box is a cube. Let sides be $x, y, z$. Volume $V = xyz = 1000$. Surface Area $S = 2(xy + yz + zx)$.

Calculation: For a cube, $x = y = z$.

$$x^3 = 1000 \implies x = 10$$$$S = 2(10\cdot10 + 10\cdot10 + 10\cdot10) = 2(100 + 100 + 100) = 2(300) = 600$$

Answer: 600

Question 5

Problem: Hessian Matrix properties for $f(x,y,z) = x^3 + 3y^3 + z^3 - 4x - 6y - 4z$ at $(0,1,1)$.

Concept: Hessian Matrix The Hessian is the matrix of second-order partial derivatives.

$$H = \begin{bmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{bmatrix}$$

Step 1: First Derivatives $f_x = 3x^2 - 4$ $f_y = 9y^2 - 6$ $f_z = 3z^2 - 4$

Step 2: Second Derivatives $f_{xx} = 6x$, $f_{yy} = 18y$, $f_{zz} = 6z$. All mixed terms ($f_{xy}$, etc.) are 0.

Step 3: Evaluate at $(0,1,1)$ $f_{xx}(0) = 0$ $f_{yy}(1) = 18$ $f_{zz}(1) = 6$

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

Step 4: Matrix Properties

  • Determinant: Product of diagonal = $0 \times 18 \times 6 = 0$.
  • Rank: Number of non-zero rows = 2.
  • Nullity: Dimension - Rank = $3 - 2 = 1$.

Correct Options:

  • $\det(A) = 0$
  • $Rank(A) = 2$
  • $Nullity(A) = 1$

Question 8

Problem: Max value of $-2x^2 + 2xy - y^2 + 12x - 4y - 7$.

Concept: Unconstrained Optimization Find critical points ($f_x=0, f_y=0$).

Step 1: Partials $f_x = -4x + 2y + 12 = 0 \implies 2x - y = 6$ (Eq 1) $f_y = 2x - 2y - 4 = 0 \implies x - y = 2$ (Eq 2)

Step 2: Solve Subtract Eq 2 from Eq 1: $(2x - y) - (x - y) = 6 - 2$ $x = 4$ Sub into Eq 2: $4 - y = 2 \implies y = 2$

Step 3: Evaluate $f(4,2) = -2(16) + 2(4)(2) - (4) + 12(4) - 4(2) - 7$ $= -32 + 16 - 4 + 48 - 8 - 7$ $= 13$

Answer: 13

Question 10

Problem: Maximize Profit. Revenue $R = 2x + 3y$. Cost $C = 2x^2 - 2xy + y^2 - 9x + 6y + 7$. Profit $P = R - C$.

Step 1: Profit Function $P(x,y) = (2x + 3y) - (2x^2 - 2xy + y^2 - 9x + 6y + 7)$ $P = -2x^2 + 2xy - y^2 + 11x - 3y - 7$

Step 2: Gradients $P_x = -4x + 2y + 11 = 0$ $P_y = 2x - 2y - 3 = 0$

Step 3: Solve Add the two equations: $(-4x + 2y + 11) + (2x - 2y - 3) = 0$ $-2x + 8 = 0 \implies x = 4$. Sub $x=4$ into $P_y$: $2(4) - 2y - 3 = 0 \implies 5 = 2y \implies y = 2.5$.

Step 4: Max Profit $P(4, 2.5) = -2(16) + 2(4)(2.5) - (2.5)^2 + 11(4) - 3(2.5) - 7$ $= -32 + 20 - 6.25 + 44 - 7.5 - 7$ $= 11.25$

Answer: 11.25

Question 12

Problem: Find stable equilibrium point (Potential Energy at Minimum) for $V(x,y) = x^4 + y^4 - 4xy + 1$.

Step 1: Critical Points $V_x = 4x^3 - 4y = 0 \implies y = x^3$ $V_y = 4y^3 - 4x = 0 \implies x = y^3$ Sub $y$: $x = (x^3)^3 = x^9 \implies x(x^8-1) = 0$. $x = 0, 1, -1$. Points: $(0,0), (1,1), (-1,-1)$.

Step 2: Hessian Test $V_{xx} = 12x^2, V_{yy} = 12y^2, V_{xy} = -4$. Determinant $D = 144x^2y^2 - 16$.

  • At (0,0): $D = -16 < 0$ (Saddle).
  • At (1,1): $D = 144-16 > 0$ and $V_{xx}=12 > 0$ (Local Min).
  • At (-1,-1): $D = 144-16 > 0$ and $V_{xx}=12 > 0$ (Local Min).

Step 3: Potential Energy Value $V(1,1) = 1 + 1 - 4 + 1 = -1$. $V(-1,-1) = 1 + 1 - 4 + 1 = -1$.

Answer: -1.00


Topic 2: Statistics (Hypothesis Testing)

Case Study: Fitness App (Q9-Q19, Q20-Q27)

Context: $\mu=100, \sigma=2, n=9$. Acceptance Region: $98.5 \le \bar{X} \le 101.5$. Reject if $\bar{X} < 98.5$ or $\bar{X} > 101.5$.

Q10-Q19: Significance Level ($\alpha$)

  1. Q10 (Blank 1): Sampling dist is Normal (Option 2).
  2. Q11 (Blank 2): Mean is 100 (Option 4).
  3. Q12 (Blank 3): Variance is $\sigma^2/n = 4/9$ (Option 6).
  4. Q13 (Blank 4): Reject if $\bar{X} >$ 101.5 (Option 8).
  5. Q14 (Blank 5): Reject if $\bar{X} <$ 98.5 (Option 7).
  6. Q16 (Blank 7): Critical Z = $\frac{101.5 - 100}{\sqrt{4/9}} = \frac{1.5}{2/3} = 2.25$. 2.25 (Option 13).
  7. Q17 (Blank 8): Lower Z = -2.25 (Option 12).
  8. Q19 (Blank 10): $\alpha = 1 - P(-2.25 < Z < 2.25) \approx 1 - 0.975 = 0.025$. Answer 0.02 (Option 14).

Q20-Q27: Power ($1-\beta$) at $\mu=103$

  1. Q21 (Blank 1): Upper boundary 101.5 (Option 3).
  2. Q22 (Blank 2): Lower boundary 98.5 (Option 1).
  3. Q23 (Blank 3): Standardized Upper $Z = \frac{101.5 - 103}{2/3} = -2.25$. -2.25 (Option 12).
  4. Q24 (Blank 4): Standardized Lower $Z = \frac{98.5 - 103}{2/3} = -6.75$. -6.75 (Option 7).
  5. Q25 (Blank 5): $P(Z > -2.25) = P(Z < 2.25) \approx$ 0.99 (Option 10).
  6. Q27 (Blank 7): Power = 0.99 + 0.

Question 10 (Independent)

Problem: Sample Size for Z-test. $X \sim N(\mu_1, 3)$ and $Y \sim N(\mu_2, 4)$. (Note: 3 and 4 are Variances). Rejection rule: $|\bar{X} - \bar{Y}| > 1.625$. $\alpha=0.05 \implies Z_{crit}=1.96$.

Formula: Critical Value $c = Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ $1.625 = 1.96 \sqrt{\frac{3}{n} + \frac{4}{8}}$

Calculation: Divide by 1.96: $0.829 = \sqrt{\frac{3}{n} + 0.5}$ Square both sides: $0.687 = \frac{3}{n} + 0.5$ $\frac{3}{n} = 0.187$ $n = \frac{3}{0.187} \approx 16.04$

Answer: 17 (Next greatest integer)

Question 11 (Battery Case Study)

Problem: Find critical value $c$ for t-test. $H_0: \mu = 11.5$, $H_A: \mu > 11.5$. $n=25, s=2.5$. $\alpha=0.05$. Degrees of freedom = 24. Critical $t$ from table ($F_{t24}(1.711) = 0.95$) is 1.711.

Calculation: $\frac{c - 11.5}{s/\sqrt{n}} = 1.711$ $c - 11.5 = 1.711 \times \frac{2.5}{5}$ $c - 11.5 = 1.711 \times 0.5$ $c = 11.5 + 0.8555 = 12.3555$

Answer: 12.36

Question 7 (Drug Variance)

Problem: Identify Hypothesis. Pharmacist suspects variability ($\sigma$) is higher than expected ($0.00002$).

Concept:

  • Null Hypothesis ($H_0$): Status quo ($\sigma = 0.00002$).
  • Alternative ($H_A$): The claim/suspicion ($\sigma > 0.00002$).

Answer: $H_0: \sigma = 0.00002, H_A: \sigma > 0.00002$ (Option 1)

Question 8 (Drug Variance Test)

Problem: Chi-Square test for Q7. $n=8, s=0.00005, \sigma_0=0.00002$.

Calculation: $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{7 \cdot (5 \times 10^{-5})^2}{(2 \times 10^{-5})^2} = 7 \cdot (2.5)^2 = 7 \cdot 6.25 = 43.75$. Critical Value (given hint): 18.475. Since $43.75 > 18.475$, we Reject $H_0$ and Accept $H_A$.

Answer: Accept the alternative hypothesis.