Mathematics I 🔥

MATHEMATICS FOR DATA SCIENCE 1 - Sets and Functions

Here is a simplified and emoji-enhanced summary of the key study material from the PDF “MATHEMATICS FOR DATA SCIENCE 1: Sets and Functions” along with practice questions and detailed solutions to help you learn effectively. 📚✨


1. Set Theory & Numbers 🔢

Natural Numbers & Integers

  • Natural numbers (N): {0, 1, 2, 3, …} — counting numbers including zero.
  • Integers (Z): {…, -3, -2, -1, 0, 1, 2, 3, …} — whole numbers including negatives.

Arithmetic Operations ➕➖✖️➗

  • Addition (+), Subtraction (-), Multiplication (×), Division (÷), Modulo (mod).
  • Example: 10 mod 3 = 1 (remainder when 10 is divided by 3).

Rational Numbers (Q) & Greatest Common Divisor (gcd)

  • Rational numbers: numbers expressed as p/q, where p,q ∈ integers.
  • gcd is the largest positive integer dividing two numbers.
  • Example: gcd(9,12) = 3.

Real & Irrational Numbers

  • Real numbers include rationals and irrationals (cannot be expressed as p/q).
  • Examples of irrationals: √2, π.

Sets & Subsets

  • A set is a collection of distinct elements.
  • Subset (X ⊆ Y): every element of X is in Y.
  • Proper subset (X ⊂ Y): X is a subset but not equal to Y.

Relations & Functions

  • Relation: subset of Cartesian product X × Y.
  • Function: each element in X maps to exactly one element in Y.
  • Types of functions:
    • Injective (one-to-one)
    • Surjective (onto)
    • Bijective (both)

1. Set Theory & Numbers 🧠

Q1. Which of the following sets is a subset of Z (integers)?

A) {2, 4, 6}

B) {1/2, 3/2, 5/2}

C) {π, √2, 2}

D) {–3, 0, 7}

Solution: A subset must have all its elements in the parent set. Z is the set of all integers.

  • A: All elements are integers. ✅
  • B: Contains fractions, not all integers. ❌
  • C: Contains irrationals, not all integers. ❌
  • D: All elements are integers. ✅

Answer: Both A and D are subsets of Z.

Q2. Find the gcd of 18 and 24. 🤝

Solution:

  • Factors of 18: 1, 2, 3, 6, 9, 18
  • Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24
  • Common factors: 1, 2, 3, 6
  • Greatest: 6

Answer: gcd(18, 24) = 6

Q3. 🌟 Which of the following is a rational number?

A) √2 B) 3/7 C) π D) 0.333…

Solution:

  • B and D are rational (0.333… = 1/3).
  • √2 and π are irrational.

Answer: B and D.

Q4. 🧮 Find gcd(18, 24).

Solution: 18: 1, 2, 3, 6, 9, 18 24: 1, 2, 3, 4, 6, 8, 12, 24 Common: 1, 2, 3, 6 gcd = 6

Q5. 🗂️ List all subsets of {a, b}.

Solution: {}, {a}, {b}, {a, b}

Q6. 🔗 Is the relation R = {(1,1), (2,2), (3,3), (1,2), (2,1)} on S = {1,2,3} symmetric?

Solution: (1,2) ∈ R ⇒ (2,1) ∈ R. All such pairs exist. Yes, R is symmetric.

Key Concepts

  • Natural Numbers (N): {0, 1, 2, 3, …} 🧒
  • Integers (Z): {…, -3, -2, -1, 0, 1, 2, …} 🔢
  • Arithmetic Operations: +, –, ×, ÷, mod ➕➖✖️➗
  • Factors: a is a factor of b if b mod a = 0
  • Rational Numbers (Q): Numbers of the form p/q, p, q ∈ Z, q ≠ 0 🧮
  • Greatest Common Divisor (gcd): Largest integer dividing two numbers
  • Irrational Numbers: Cannot be written as p/q (e.g., √2, π) 🌀
  • Real Numbers (R): All rationals + irrationals 🌐
  • Sets: Collection of well-defined items (e.g., {1, 2, 3}) 🗂️
  • Subsets: X ⊆ Y if every element of X is in Y
  • Set Comprehension: Building subsets using rules
  • Relations: Subsets of Cartesian products (ordered pairs) 🔗
  • Properties of Relations: Reflexive, symmetric, transitive, equivalence
  • Functions: Special relations where each input has one output
    • Injective (one-to-one), Surjective (onto), Bijective (both)

2. Straight Lines 📏

Cartesian Coordinates & Distance

  • Distance between points (x1,y1) and (x2,y2):
$$ \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $$
  • Section formula for dividing a segment in ratio m:n:
$$ x = \frac{mx_2 + nx_1}{m+n}, \quad y = \frac{my_2 + ny_1}{m+n} $$

Slope of a Line

  • Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$.
  • Parallel lines: equal slopes.
  • Perpendicular lines: product of slopes = -1.

Equation Forms

  • Slope-intercept: $y = mx + c$.
  • Point-slope: $y - y_1 = m(x - x_1)$.
  • Two-point form: $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$.

Distance from Point to Line

$$ d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} $$

2. Straight Lines 🧠

Q1. What is the distance between the points (3, 4) and (7, 1)? 📐

Solution: Use the distance formula:

$$ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $$$$ d = \sqrt{(7-3)^2 + (1-4)^2} = \sqrt{4^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 $$

Answer: 5 units

Q2. Find the equation of the line passing through (1, 2) with slope 3. 📝

Solution: Point-slope form: $ y - y_1 = m(x - x_1) $

$$ y - 2 = 3(x - 1) \implies y = 3x - 1 $$

Answer: $ y = 3x - 1 $

Q3. 📏 Find the distance between (2,4) and (–4,12).

Solution: $ d = \sqrt{(-4-2)^2 + (12-4)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 $

Q4. 🔺 Find the area of triangle with points (0,10), (–20,–30), (10,30).

Solution: $ \Delta = \frac{1}{2}|0((-30)-30) + (-20)(30-10) + 10(10-(-30))| $ $ = \frac{1}{2}|0 + (-20)(20) + 10(40)| = \frac{1}{2}|-400 + 400| = 0 $ Points are collinear.

Q5. 📝 Find the equation of the line through (1,2) with slope 3.

Solution: $ y - 2 = 3(x - 1) \implies y = 3x - 1 $

Q6. 📊 Calculate SSE for points (1,5), (2,6), (4,9), (9,18) with line y = 2x + 2.

Solution: SSE = (5–4)² + (6–6)² + (9–10)² + (18–20)² = 1 + 0 + 1 + 4 = 6

Key Concepts

  • Cartesian Coordinates: Points as (x, y) 📍
  • Distance Formula: $ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ 📏
  • Section Formula: Dividing a line segment in ratio m:n
  • Area of Triangle: $ \Delta = \frac{1}{2} |x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)| $ 🔺
  • Slope (m): $ m = \frac{y_2 - y_1}{x_2 - x_1} $
  • Equation Forms:
    • Slope-intercept: $ y = mx + c $
    • Point-slope: $ y - y_1 = m(x - x_1) $
    • Two-point: $ y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) $
  • Parallel/Perpendicular:
    • Parallel: Equal slopes
    • Perpendicular: Product of slopes = –1
  • Distance from Point to Line: $ d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} $
  • Sum Squared Error (SSE): $ SSE = \sum (y_i - (mx_i + c))^2 $

3. Quadratic Functions & Equations 📐

  • Quadratic function: $f(x) = ax^2 + bx + c$, $a \neq 0$.
  • Vertex: $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$.
  • Axis of symmetry: $x = -\frac{b}{2a}$.
  • Parabolas open up if $a > 0$, down if $a < 0$.

Solving Quadratic Equations

  • By factoring
  • By completing the square
  • By quadratic formula:
$$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$

Practice Questions 🧠

Q1. 🧮 Solve $ x^2 + 2x = 24 $ by factoring.

Solution: $ x^2 + 2x - 24 = 0 $ $ (x + 6)(x - 4) = 0 $ $ x = -6, 4 $

Q2. 📍 Find the vertex of $ f(x) = 2x^2 - 8x + 3 $.

Solution: $ x_v = -\frac{-8}{2 \times 2} = 2 $ $ y_v = 2(2)^2 - 8(2) + 3 = 8 - 16 + 3 = -5 $ Vertex: (2, –5)

Q3. 🧩 Solve $ x^2 + 2x - 24 = 0 $ using quadratic formula.

Solution: $ a = 1, b = 2, c = -24 $ $ x = \frac{-2 \pm \sqrt{4 + 96}}{2} = \frac{-2 \pm 10}{2} $ $ x = 4, -6 $

Q5. Solve the quadratic equation $ x^2 - 5x + 6 = 0 $ by factoring. 🧮

Solution: Factor: $ (x - 2)(x - 3) = 0 $ So, $ x = 2 $ or $ x = 3 $

Answer: $ x = 2, 3 $

Q6. Find the vertex of $ f(x) = 2x^2 - 8x + 3 $. 📍

Solution: Vertex $ x $-coordinate: $ x = -\frac{b}{2a} = -\frac{-8}{2 \times 2} = 2 $ $ y $-coordinate: $ f(2) = 2(2)^2 - 8(2) + 3 = 8 - 16 + 3 = -5 $ Vertex: (2, –5)

Answer: (2, –5)

Key Concepts

  • Quadratic Function: $ f(x) = ax^2 + bx + c $, $ a \neq 0 $ 📈
  • Parabola: Graph of quadratic function
  • Axis of Symmetry: $ x = -\frac{b}{2a} $
  • Vertex: $ \left(-\frac{b}{2a}, f(-\frac{b}{2a})\right) $ 📍
  • Roots/Solutions: Where $ f(x) = 0 $
  • Solving Methods: Factoring, completing the square, quadratic formula: $ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $

4. Polynomial Functions ✍️

  • Polynomial: sum of terms $a_n x^n + \cdots + a_0$.
  • Degree: highest exponent.
  • Types: monomial, binomial, trinomial.
  • Operations: addition, subtraction, multiplication, division (long division).

Practice Questions 🧠

Q1. ➕ Add $ p(x) = x^3 + 3x^2 + 5x - 10 $, $ q(x) = 3x^3 + 5x^2 - 6x - 20 $.

Solution: $ (1+3)x^3 + (3+5)x^2 + (5-6)x + (-10-20) = 4x^3 + 8x^2 - x - 30 $

Q2. ➗ Divide $ x^3 - 2x^2 + 4x - 8 $ by $ x - 2 $.

Solution: $ x - 2 $ is a factor (since substituting x = 2 gives 0). Quotient: $ x^2 + 0x + 4 $, remainder 0.

Q3. 🔎 Find the zeroes of $ f(x) = x^2 - 4 $.

Solution: $ x^2 - 4 = 0 \implies x = 2, -2 $

Q7. Add the polynomials $ p(x) = 2x^2 + 3x - 1 $ and $ q(x) = x^2 - x + 4 $. ➕

Solution:

$$ p(x) + q(x) = (2x^2 + x^2) + (3x - x) + (-1 + 4) = 3x^2 + 2x + 3 $$

Answer: $ 3x^2 + 2x + 3 $

Q8. Divide $ x^3 - 2x^2 + 4x - 8 $ by $ x - 2 $. ➗

Solution: Use synthetic division or the remainder theorem:

  • Substitute $ x = 2 $: $ (2)^3 - 2(2)^2 + 4(2) - 8 = 8 - 8 + 8 - 8 = 0 $ So, $ x - 2 $ is a factor. Divide:
$$ x^3 - 2x^2 + 4x - 8 = (x - 2)(x^2 + 4) $$

Answer: Quotient is $ x^2 + 4 $, remainder is 0.

Key Concepts

  • Polynomial: Expression with terms $ a_nx^n + … + a_0 $ ✍️
  • Degree: Highest exponent
  • Types: Monomial (1 term), binomial (2), trinomial (3)
  • Operations: Addition, subtraction, multiplication, division
  • Zeroes: Values where $ f(x) = 0 $

5. Exponential Functions & Composition 🔥

  • Exponential function: $f(x) = a^x$, $a > 0, a \neq 1$.
  • Vertical Line Test: checks if a relation is a function.
  • Horizontal Line Test: checks if a function is one-to-one.
  • Composition: $(f \circ g)(x) = f(g(x))$.

Q1. ⚡ Solve $ 2^x = 16 $.

Solution: $ 16 = 2^4 \implies x = 4 $

Q2. 🔄 Find the inverse of $ f(x) = 4x $.

Solution: Let $ y = 4x \implies x = y/4 $ Inverse: $ f^{-1}(x) = x/4 $

Q9. Solve for $ x $: $ 2^x = 16 $. ⚡

Solution: $ 16 = 2^4 $, so $ 2^x = 2^4 \Rightarrow x = 4 $

Answer: $ x = 4 $

Q10. Solve for $ x $: $ \log_3(x) = 2 $. 🔑

Solution:

$$ x = 3^2 = 9 $$

Answer: $ x = 9 $

Q11. Simplify $ \log_2(8) + \log_2(4) $. 🧩

Solution: $ \log_2(8) = 3 $, $ \log_2(4) = 2 $ Sum: $ 3 + 2 = 5 $

Answer: 5

Q12. Solve $ \log_5(x - 1) + \log_5(x + 1) = 1 $. 🔍

Solution: Use the product rule: $ \log_5((x - 1)(x + 1)) = 1 \implies \log_5(x^2 - 1) = 1 \implies x^2 - 1 = 5^1 = 5 \implies x^2 = 6 \implies x = \pm \sqrt{6} $ But for log to be defined, $ x > 1 $. So, $ x = \sqrt{6} $ (approx 2.45)

Answer: $ x = \sqrt{6} $

Key Concepts

  • Exponential Function: $ f(x) = a^x $, $ a > 0, a \neq 1 $ 📈
  • Laws of Exponents:
    • $ a^m \times a^n = a^{m+n} $
    • $ (a^m)^n = a^{mn} $
  • Graph: Always positive, increasing if $ a > 1 $, decreasing if $ 0 < a < 1 $
  • Composition: $ (f \circ g)(x) = f(g(x)) $
  • Inverse Function: Exists if function is one-to-one

6. Logarithmic Functions 🔑

  • Logarithm is inverse of exponential: $y = \log_a x \iff x = a^y$.
  • Domain: $x > 0$, Range: all real numbers.
  • Properties:
    • $\log_a (MN) = \log_a M + \log_a N$
    • $\log_a \frac{M}{N} = \log_a M - \log_a N$
    • $\log_a M^r = r \log_a M$

Practice Questions 🧠

Q1. 🔑 Solve $ \log_3 x = 2 $.

Solution: $ x = 3^2 = 9 $

Q2. 🧩 Simplify $ \log_2 8 + \log_2 4 $.

Solution: $ \log_2 8 = 3 $, $ \log_2 4 = 2 $, so $ 3 + 2 = 5 $

Q3. 🔍 Solve $ \log_8(x+1) + \log_8(x-1) = 1 $.

Solution: $ \log_8((x+1)(x-1)) = 1 \implies \log_8(x^2-1) = 1 \implies x^2-1 = 8 \implies x^2 = 9 \implies x = 3 $ (since log not defined for negative arguments).

Q4. 🚀 Solve $ \log_2(x^2 - 4) = 3 $.

Solution: $ x^2 - 4 = 2^3 = 8 \implies x^2 = 12 \implies x = \pm 2\sqrt{3} $ Domain: $ x^2 - 4 > 0 \implies x > 2 $ or $ x < -2 $ So, $ x = 2\sqrt{3}, -2\sqrt{3} $

Q13. If $ f(x) = 2x + 3 $ and $ g(x) = x^2 $, find $ (f \circ g)(1) $. 🔗

Solution: $ (f \circ g)(1) = f(g(1)) = f(1^2) = f(1) = 2(1) + 3 = 5 $

Answer: 5

Q14. If $ f(x) = x + 1 $, find its inverse. 🔁

Solution: Let $ y = x + 1 \implies x = y - 1 $. So, $ f^{-1}(x) = x - 1 $

Answer: $ f^{-1}(x) = x - 1 $

7. Challenge Problem 🌟

Q15. Solve: $ \log_2(x^2 - 4) = 3 $. 🚀

Solution: $ x^2 - 4 = 2^3 = 8 \implies x^2 = 12 \implies x = \pm 2\sqrt{3} $ But $ x^2 - 4 > 0 \implies x > 2 $ or $ x < -2 $. So, both $ x = 2\sqrt{3} $ and $ x = -2\sqrt{3} $ are valid.

Answer: $ x = 2\sqrt{3} $ or $ x = -2\sqrt{3} $

Key Concepts

  • Logarithm: Inverse of exponential, $ y = \log_a x \iff x = a^y $ 🔑
  • Domain: $ x > 0 $, Range: all real numbers
  • Laws:
    • $ \log_a(MN) = \log_a M + \log_a N $
    • $ \log_a(M/N) = \log_a M - \log_a N $
    • $ \log_a(M^r) = r \log_a M $
  • Natural Logarithm: $ \ln x = \log_e x $
  • Common Logarithm: $ \log_{10} x $

Practice Questions with Solutions 📝✨

Q1: Find the distance between points (2,4) and (-4,12). 📐

Solution:

$$ \sqrt{(-4 - 2)^2 + (12 - 4)^2} = \sqrt{(-6)^2 + 8^2} = \sqrt{36 + 64} = \sqrt{100} = 10 $$

Q2: Solve quadratic equation $x^2 + 2x = 24$ by factoring. 🧮

Solution:

$$ x^2 + 2x - 24 = 0 $$

Factor:

$$ (x + 6)(x - 4) = 0 $$

Roots:

$$ x = -6, \quad x = 4 $$

Q3: Add polynomials $p(x) = x^3 + 3x^2 + 5x - 10$ and $q(x) = 3x^3 + 5x^2 - 6x - 20$. ➕

Solution:

$$ p(x) + q(x) = (1+3)x^3 + (3+5)x^2 + (5 - 6)x + (-10 - 20) = 4x^3 + 8x^2 - x - 30 $$

Q4: Find the inverse of $f(x) = 4x$ and verify if $g(x) = \frac{x}{4}$ is the inverse. 🔄

Solution: Check compositions:

$$ (g \circ f)(x) = g(4x) = \frac{4x}{4} = x $$$$ (f \circ g)(x) = f\left(\frac{x}{4}\right) = 4 \times \frac{x}{4} = x $$

Hence, $g$ is inverse of $f$.


Q5: Solve $\log_8 (x+1) + \log_8 (x-1) = 1$. 🔍

Solution:

$$ \log_8 ((x+1)(x-1)) = 1 \implies \log_8 (x^2 - 1) = 1 $$$$ x^2 - 1 = 8^1 = 8 \implies x^2 = 9 \implies x = \pm 3 $$

Check domain: $x > 1$, so $x = 3$ only.


Q6: If $f(x) = 3x - 4$ and $g(x) = x^2$, find $(f \circ g)(x)$. 🎯

Solution:

$$ (f \circ g)(x) = f(g(x)) = f(x^2) = 3x^2 - 4 $$

Q7: Calculate sum squared error (SSE) for points (1,5), (2,6), (4,9), (9,18) with line $y=2x+2$. 📊

Solution:

$$ SSE = \sum (y_i - (2x_i + 2))^2 = (5-4)^2 + (6-6)^2 + (9-10)^2 + (18-20)^2 = 1 + 0 + 1 + 4 = 6 $$

This summary covers essential concepts with emojis for easy understanding and practice questions with detailed solutions to reinforce learning. For more exercises and deeper understanding, refer to the full PDF. 📘✨

If you want, I can prepare more practice questions or detailed explanations on any specific topic! 😊