M1_VOL2_CALCULUS.pdf

explain all concepts from this pdf with detailed structure , examples, related questions & answers with ease to understand
Below is a structured, detailed, and easy-to-understand explanation of all major concepts from the PDF “M1_VOL2_CALCULUS.pdf,” including definitions, examples, related questions, and answers1.
1. Limits and Continuity
1.1 Introduction
- Concept: Calculus builds on real numbers, sets, functions, and operations. It introduces limits and continuity to understand behavior at points and infinity.
- Example: In school, you learned about real numbers and functions like $ f(x) = x^2 $.
1.2 What is a Function?
- Definition: A function $ f: A \to B $ assigns exactly one output in $ B $ for every input in $ A $.
- Domain: Input set $ A $.
- Codomain: Output set $ B $.
- Range: Actual output values $ {f(a) \mid a \in A} $.
- Example: $ f(x) = x^2 $ is a function from $ \mathbb{R} $ to $ \mathbb{R} $.
- Counterexample: $ R = {(1,a), (2,b), (3,a), (1,b)} $ is not a function because 1 maps to both $ a $ and $ b $.
Graph of Functions
- Definition: Graph of $ f $ is $ {(x, f(x)) \mid x \in domain} $.
- Example: For $ f(x) = 7x+2 $, graph is all points $ (x, 7x+2) $.
Types of Functions
- Linear: $ f(x) = ax + b $
- Quadratic: $ f(x) = ax^2 + bx + c $
- Polynomial: $ f(x) = a_nx^n + ··· + a_0 $
- Exponential: $ f(x) = a^x $
- Logarithmic: $ f(x) = \log_a x $
- Trigonometric: $ \sin x, \cos x, \tan x $
- Step functions: Floor $ \lfloor x \rfloor $, Ceiling $ \lceil x \rceil $, Absolute $ |x| $
- Examples:
- Floor in $[-1,2]$: $ \lfloor x \rfloor = -1 $ for $-1 \leq x < 0$, $0$ for $0 \leq x < 1$, $1$ for $1 \leq x < 2$.
- Absolute: $ |x| = x $ if $ x \geq 0 $, $-x$ if $ x < 0 $.
Bounded Function
- Definition: $ f $ is bounded if $ m \leq f(x) \leq M $ for all $ x $.
- Example: $ f(x) = \frac{1}{x^2+1} $ is bounded ($0 \leq f(x) \leq 1$).
- Counterexample: $ f(x) = \frac{1}{x} $ on $ (0, \infty) $ is unbounded.
Monotonicity
- Increasing: If $ x \leq y \implies f(x) \leq f(y) $.
- Decreasing: If $ x \leq y \implies f(x) \geq f(y) $.
- Example: $ f(x) = x^2 $ is increasing on $[0, \infty)$.
- Example: $ f(x) = 7-4x $ is decreasing on $ \mathbb{R} $.
- Example: $ f(x) = |x| $ is neither increasing nor decreasing on $ \mathbb{R} $.
Arithmetic Operations on Functions
- Sum: $ (f+g)(x) = f(x) + g(x) $
- Difference: $ (f-g)(x) = f(x) - g(x) $
- Product: $ (fg)(x) = f(x)g(x) $
- Quotient: $ (f/g)(x) = f(x)/g(x) $ (if $ g(x) \neq 0 $)
- Example: If $ f(x) = x^3 + 5x + 1 $, $ g(x) = 3x^2 + 2x + 5 $, then $ (f-g)(x) = x^3 - 3x^2 + 3x - 4 $.
Composition of Functions
- Definition: $ (g \circ f)(x) = g(f(x)) $.
- Example: If $ f(x) = x^2 $, $ g(x) = 3x^3 + 2x $, then $ (g \circ f)(x) = 3x^6 + 2x^2 $.
- Question: If $ f(x) = \frac{x}{x+a} $, $ f(f(x)) = \frac{x}{3x+4} $, find $ a $.
- Answer: $ a = 2 $.
1.3 Curve and Tangent
- Curve: Path of a moving point.
- Tangent: Line touching curve at a point, representing instantaneous direction.
- Example: Graph of $ f(x) = x^2 $ is a curve. At point $ (a, a^2) $, tangent is unique.
- Example: Floor function $ f(x) = \lfloor x \rfloor $ is not a curve (has jumps).
- Question: Is tangent possible for $ f(x) = \lfloor x \rfloor $ at $ x=2 $ and $ x=3.5 $?
- Answer: No tangent at $ x=2 $ (jump), tangent is $ y=3 $ at $ x=3.5 $.
1.4 Sequence and Limit of Sequence
- Sequence: Function $ f: \mathbb{N} \to \mathbb{R} $, denoted $ {a_n} $.
- Limit of Sequence: $ \lim_{n \to \infty} a_n = L $ if $ a_n $ gets arbitrarily close to $ L $ as $ n $ increases.
- Example: $ a_n = 1 - \frac{1}{n^2} $ converges to 1.
- Example: $ a_n = n $ diverges.
- Example: $ a_n = (-1)^n $ diverges (oscillates).
- Example: $ a_n = \frac{n+1}{n} $ converges to 1.
Subsequence
- Definition: A sequence formed by selecting terms from another sequence in order.
- Example: For $ a_n = 5n^2 + 1 $, subsequence $ b_n = a_{2n} = 5(2n)^2 + 1 $.
Tools for Limits
- Sum/Difference: $ \lim (a_n \pm b_n) = \lim a_n \pm \lim b_n $
- Product: $ \lim (a_n b_n) = \lim a_n \cdot \lim b_n $
- Quotient: $ \lim (a_n / b_n) = \lim a_n / \lim b_n $ (if $ \lim b_n \neq 0 $)
- Sandwich Principle: If $ a_n \leq c_n \leq b_n $ and $ \lim a_n = \lim b_n = L $, then $ \lim c_n = L $.
- Example: $ c_n = \frac{\sin n}{n} \rightarrow 0 $ (since $ -\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n} $).
Important Theorems
- If $ \lim a_n = L $, then $ \lim \frac{a_1 + ··· + a_n}{n} = L $.
- If $ \lim \frac{a_{n+1}}{a_n} = \ell $, then:
- If $ |\ell| < 1 $, $ \lim a_n = 0 $.
- If $ \ell > 1 $, $ \lim a_n = \infty $.
Exercises
- Q5: $ a_n = \frac{5+3\sqrt{n}}{\sqrt{n}} \rightarrow 3 $
- Q6: $ a_n = 5^{1/n} \rightarrow 1 $
- Q7: $ a_n = \left(\frac{1}{2}\right)^n \rightarrow 0 $
- Q8: $ a_n = \frac{(-1)^n}{2n} \rightarrow 0 $
- Q9: If $ b_n \rightarrow 1 $, $ c_n \rightarrow \infty $, then $ \frac{b_n}{c_n} \rightarrow 0 $
1.5 Limit of Function
- Definition: $ \lim_{x \to a} f(x) = L $ if $ f(x) $ gets close to $ L $ as $ x $ approaches $ a $.
- Left/Right Limits: $ \lim_{x \to a^-} f(x) $, $ \lim_{x \to a^+} f(x) $
- Example: $ \lim_{x \to 1} x^2 = 1 $
- Example: $ \lim_{x \to -1} \lfloor x \rfloor $ does not exist (left limit is -2, right limit is -1).
- Example: $ f(x) = 1 $ if $ x $ is rational, $ 0 $ otherwise. $ \lim_{x \to \sqrt{2}} f(x) $ does not exist.
Limit at Infinity
- Definition: $ \lim_{x \to \infty} f(x) = L $ if $ f(x) $ approaches $ L $ as $ x $ becomes very large.
- Example: $ \lim_{x \to \infty} \frac{1}{x} = 0 $
Algebra of Limits
- Sum/Difference: $ \lim (f \pm g) = \lim f \pm \lim g $
- Product: $ \lim (f \cdot g) = \lim f \cdot \lim g $
- Quotient: $ \lim (f/g) = \lim f / \lim g $ (if $ \lim g \neq 0 $)
- Example: $ \lim_{x \to 2} (5x+9) = 19 $
- Example: $ \lim_{x \to -3} x^4 = 81 $
- Example: $ \lim_{x \to 5} \frac{25}{x^2} = 1 $
Sandwich Theorem
- If $ f(x) \leq h(x) \leq g(x) $ and $ \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L $, then $ \lim_{x \to a} h(x) = L $.
- Example: $ \lim_{x \to 0} x^2 \sin(1/x) = 0 $
- Example: $ \lim_{x \to 0} \frac{\sin x}{x} = 1 $
- Example: $ \lim_{x \to 0} \frac{\tan x}{x} = 1 $
- Example: $ \lim_{x \to 0} \frac{1-\cos x}{x^2} = \frac{1}{2} $
1.6 Continuity
- Definition: $ f $ is continuous at $ a $ if $ \lim_{x \to a} f(x) = f(a) $.
- Example: $ f(x) = |x| $ is continuous at $ x=0 $.
- Example: $ f(x) = \lfloor x \rfloor $ is not continuous at integers.
- Piecewise Example: $ f(x) = $$ \begin{cases} x+1 & -4 \leq x < 2 \\ x^2-4 & 2 \leq x \leq 3 \end{cases} $$ $ is not continuous at $ x=2 $.
Theorems on Continuity
- Sum/Difference/Product/Quotient: If $ f $ and $ g $ are continuous at $ a $, so are $ f \pm g $, $ f \cdot g $, $ f/g $ (if $ g(a) \neq 0 $).
- Composition: If $ g $ is continuous at $ a $ and $ f $ is continuous at $ g(a) $, then $ f \circ g $ is continuous at $ a $.
Exercises
- Q11: $ f(x) = $$
\begin{cases} 1 & x \geq 0 \\ -1 & x < 0 \end{cases}
$$ $
- Right limit at 0: $ \lim_{x \to 0^+} f(x) = 1 $
- Left limit at 0: $ \lim_{x \to 0^-} f(x) = -1 $
- Limit at 0 does not exist.
- Q12:
- $ \lim_{x \to \infty} \frac{1}{x} = 0 $ (Option 1)
- $ \lim_{x \to \infty} \frac{x^2}{1+x} = \infty $
- $ \lim_{x \to -\infty} \frac{1+x}{x^2} = 0 $ (Option 3)
- $ \lim_{x \to \infty} \frac{1+x+x^2}{5x^2+1} = \frac{1}{5} $ (Option 4)
- Q14:
- $ \lim_{x \to -1} \frac{x^2-6x-7}{x^2+3x+2} = \lim_{x \to -1} \frac{(x+1)(x-7)}{(x+1)(x+2)} = \lim_{x \to -1} \frac{x-7}{x+2} = -8 $ (Option 1)
- $ \lim_{x \to 0} \frac{x^2-6x-7}{x^2+3x+2} = \frac{-7}{2} $
- $ \lim_{x \to 3} \frac{x^2-6x+9}{x-3} = \lim_{x \to 3} (x-3) = 0 $
2. Differentiation
2.1 Differentiability and the Derivative
- Definition: $ f $ is differentiable at $ a $ if $ \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} $ exists.
- Example: $ f(x) = x $ is differentiable everywhere, derivative is 1.
- Example: $ f(x) = \sin x $ is differentiable at 0, derivative is 1.
- Example: $ f(x) = |x| $ is not differentiable at 0 (left and right derivatives differ).
- Example: $ f(x) = x^{1/3} $ is not differentiable at 0 (derivative tends to infinity).
- Example: $ f(x) = \lfloor x \rfloor $ is not differentiable at integers.
Relation to Continuity
- Theorem: If $ f $ is differentiable at $ a $, then $ f $ is continuous at $ a $.
- Example: $ f(x) = \lfloor x \rfloor $ is not continuous at integers, so not differentiable.
Derivative Rules
- Sum/Difference: $ (f \pm g)’ = f’ \pm g’ $
- Product: $ (fg)’ = f’g + fg’ $
- Quotient: $ (f/g)’ = \frac{f’g - fg’}{g^2} $
- Chain Rule: $ (f(g(x)))’ = f’(g(x))g’(x) $
- Example: $ f(x) = x^2 $, $ f’(x) = 2x $
- Example: $ f(x) = \sin x $, $ f’(x) = \cos x $
- Example: $ f(x) = e^x $, $ f’(x) = e^x $
- Example: $ f(x) = \ln x $, $ f’(x) = 1/x $
Exercises
- Q27: $ f(x) = 5x $, derivative at $ x=2 $ is 5.
- Q28:
- $ f(x) = a $ (constant), derivative is 0.
- $ f(x) = x - c $, derivative is 1.
- $ f(x) = x^2 $, derivative at $ c $ is $ 2c $.
- $ f(x) = e^x $, derivative at $ c $ is $ e^c $.
- Q29: Check graphs for continuity and differentiability.
- Q30:
- If $ \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} $ exists, $ f $ is differentiable at $ a $.
- If $ f $ is differentiable at $ a $, it is continuous at $ a $.
- There exist continuous functions not differentiable at some points (e.g., $ |x| $ at 0).
2.2 Indeterminate Limits and L’Hôpital’s Rule
- Indeterminate Form: $ \frac{0}{0} $ or $ \frac{\infty}{\infty} $.
- L’Hôpital’s Rule: If $ \lim_{x \to a} \frac{f(x)}{g(x)} $ is indeterminate, and $ f’ $, $ g’ $ exist near $ a $, then $ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f’(x)}{g’(x)} $.
- Example: $ \lim_{x \to 0} \frac{\log(1+x)}{x} = 1 $
- Example: $ \lim_{x \to 0} \frac{\sin x}{x} = 1 $
- Example: $ \lim_{x \to \infty} \frac{a+be^x}{c+de^x} = \frac{b}{d} $
- Example: $ \lim_{x \to 0} \frac{1-\cos x}{x^2} = \frac{1}{2} $
Exercises
- Q40: $ f(x) = \sqrt{9-x^2} $, $ \lim_{x \to 1} \frac{f(x)-f(1)}{x-1} = -\frac{1}{2\sqrt{2}} $, $ \sqrt{8} \times $ this is $-1$.
- Q42: $ \lim_{x \to \infty} x e^{-x} = 0 $
2.3 Tangents and Linear Approximation
- Tangent Line: $ y = f’(a)(x-a) + f(a) $
- Linear Approximation: $ L(x) = f(a) + f’(a)(x-a) $
- Example: $ f(x) = \cos x $, tangent at $ x=\pi/3 $: $ y = -\frac{\sqrt{3}}{2}(x-\pi/3) + \frac{1}{2} $
- Example: $ f(x) = x^3 $, linear approximation at 1: $ L(x) = 3x-2 $
Exercises
- Q44: $ f(x) = 4x^2 $, tangent at $ x=2 $: $ y = 16x - 16 $
- Q45: $ f(x) = 2x+5 $, linear approximation at 0: $ L(x) = 2x+5 $
- Q46: Tangent at $ (1,0) $, passes through $ (5,8) $, slope $ f’(1) = 2 $
- Q47: $ f(x) = x^3 + 3x $, slopes at $ x=-1,0,1 $: $ m_1 + m_2 + m_3 = 15 $
- Q48: Same as Q46, $ f’(1) = 2 $
- Q49: Tangent at $ (1, f(1)) $ is $ y=3x+2 $, so $ f(1) = 5 $
2.4 Finding Critical Points: Applications
- Critical Point: $ f’(a) = 0 $ or $ f $ not differentiable at $ a $.
- Local Max/Min: Use second derivative test:
- $ f’’(a) > 0 $: local min
- $ f’’(a) < 0 $: local max
- $ f’’(a) = 0 $: test fails (saddle or inflection)
- Example: $ f(x) = x^3 - 12x $, critical points at $ x=2 $ (local min), $ x=-2 $ (local max)
- Example: $ f(x) = \cos x $, critical points at $ x=k\pi $, local max at even $ k $, local min at odd $ k $
- Example: $ f(x) = x^3 + x^2 - x + 5 $, critical points at $ x=-1 $ (local max), $ x=1/3 $ (local min)
Global Max/Min
- Definition: Maximum/minimum value of $ f $ over an interval.
- Example: $ f(x) = x^2 $ on $[-1,1]$, global min at $ x=0 $, global max at $ x=-1 $ and $ x=1 $.
Exercises
- Q51: $ f(x) = \frac{1}{3}x^3 - x^2 + x $, only one critical point at $ x=1 $, second derivative test inconclusive (saddle point).
- Q52: $ f(x) = $$
\begin{cases} -x^2 + 2x + 3 & 0 \leq x \leq 50 \\ x^3 + 3 & -50 \leq x < 0 \end{cases}
$$ $
- $ x=1 $ is local max.
- $ x=-50 $ is global min.
- $ x=50 $ is not global min.
- Q53: At local min $ x=2 $, slope $ f’(2) = 0 $. At local max $ x=5 $, slope $ f’(5) = 0 $.
- Q56: Minimum of $ (x-\alpha)(x-\beta) $ at $ x = \frac{\alpha+\beta}{2} $.
- Q57: Max of $ 2xy $ when $ x+y=50 $: $ 1250 $.
3. Integration
3.1 Introduction
- Concept: Integration is used to compute areas under curves, volumes, and more.
- Example: Area of rectangle is $ lb $.
3.2 Computing Areas
- Area of Parallelogram: $ bh $
- Area of Triangle: $ \frac{1}{2}bh $
- Area of Trapezium: $ \frac{1}{2}(a+b)h $
- Area of Circle: $ \pi r^2 $ (using limits or integration)
Exercises
- Q65: Area of trapezium $ ACDB $: $ 6 $ sq units
- Q66: Sequence of circles, radius $ r_n = \frac{2n-1}{2n+2} $, area of biggest circle $ \leq \pi $, smallest circle $ \frac{\pi}{16} $
3.3 Riemann Sums and the Integral
- Partition: Divide interval $[a,b]$ into subintervals.
- Riemann Sum: $ S(P) = \sum_{i=1}^n f(x_i^*) \Delta x_i $
- Definite Integral: $ \int_a^b f(x) dx = \lim_{||P|| \to 0} S(P) $
- Example: $ \int_1^2 (2x-1) dx = 2 $
Exercises
- Q70: For $ f(x) = x $ on $2$, Riemann sum with $ x_i^* = x_i $: $ \frac{25(n+1)}{2n} $
- Q71: $ \int_0^2 (3x+1) dx = 8 $
3.5 Anti-derivatives (Indefinite Integrals)
- Definition: $ F $ is anti-derivative of $ f $ if $ F’(x) = f(x) $.
- Fundamental Theorem of Calculus: $ \int_a^b f(x) dx = F(b) - F(a) $
- Integration Rules:
- $ \int x^n dx = \frac{x^{n+1}}{n+1} + C $ ($ n \neq -1 $)
- $ \int \sin x dx = -\cos x + C $
- $ \int e^x dx = e^x + C $
- $ \int \frac{1}{x} dx = \ln|x| + C $
Integration by Parts
- Formula: $ \int f(x)g(x) dx = f(x) \int g(x) dx - \int f’(x) (\int g(x) dx) dx $
- Example: $ \int x^2 2^x dx = \frac{x^2 2^x}{\ln 2} - \frac{x 2^{x+1}}{(\ln 2)^2} + \frac{2^{x+1}}{(\ln 2)^3} + C $
Integration by Substitution
- Formula: $ \int f(g(x))g’(x) dx = \int f(u) du $ where $ u = g(x) $
- Example: $ \int \sin(5x) dx = -\frac{1}{5} \cos(5x) + C $
Basic Properties of Definite Integrals
- Linearity: $ \int (cf + dg) = c \int f + d \int g $
- Additivity: $ \int_a^b f = \int_a^c f + \int_c^b f $
- Improper Integrals: $ \int_a^\infty f(x) dx = \lim_{b \to \infty} \int_a^b f(x) dx $
- Example: $ \int_1^\infty e^{-x} dx = \frac{1}{e} $
Piecewise Defined Functions
- Example: $ f(x) = $$ \begin{cases} x & 0 \leq x \leq 1 \\ 3-x & 1 < x \leq 2 \end{cases} $$ $, $ \int_0^2 f(x) dx = 2 $
Exercises
- Q75: $ \int_2^3 x^2 dx = \frac{19}{3} $
- Q76: $ \int_1^2 (3x^2 + \frac{1}{x}) dx = 7 + \ln 2 $
- Q77:
- $ \int_2^3 x^2 dx = \frac{19}{3} $
- $ \int_1^2 \frac{1}{x} dx = \ln 2 $
- $ \int_0^{\pi/3} \tan x \sec x dx = 1 $
- $ \int_0^2 \frac{1}{\sqrt{4-x^2}} dx = \frac{\pi}{2} $
- Q78:
- $ \int_1^\infty e^{-x} dx = \frac{1}{e} $
- $ \int_1^\infty \frac{1}{x} dx $ does not exist
- Q81: Area between $ 3x^2 $ and $ 4-x^2 $: $ 3A = 16 $
Summary Table
Concept | Key Points & Formulas | Example/Question | Answer/Explanation |
---|---|---|---|
Function | $ f: A \to B $, domain, codomain, range | $ f(x) = x^2 $, $ R = {(1,a), (2,b), (3,a), (1,b)} $ | $ R $ is not a function |
Bounded Function | $ m \leq f(x) \leq M $ | $ f(x) = \frac{1}{x^2+1} $ | Bounded |
Monotonicity | Increasing/Decreasing | $ f(x) = x^2 $ on $[0,\infty)$ | Increasing |
Composition | $ (g \circ f)(x) = g(f(x)) $ | $ f(x) = x^2 $, $ g(x) = 3x^3 + 2x $ | $ (g \circ f)(x) = 3x^6 + 2x^2 $ |
Sequence Limit | $ \lim_{n \to \infty} a_n = L $ | $ a_n = \frac{n+1}{n} $ | 1 |
Function Limit | $ \lim_{x \to a} f(x) = L $ | $ \lim_{x \to 1} x^2 = 1 $ | 1 |
Continuity | $ \lim_{x \to a} f(x) = f(a) $ | $ f(x) = | x |
Differentiability | $ f’(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} $ | $ f(x) = | x |
Derivative Rules | Sum, Product, Quotient, Chain | $ (x^3)’ = 3x^2 $ | 3x² |
L’Hôpital’s Rule | $ \lim \frac{f}{g} = \lim \frac{f’}{g’} $ | $ \lim_{x \to 0} \frac{\sin x}{x} $ | 1 |
Tangent Line | $ y = f’(a)(x-a) + f(a) $ | $ f(x) = x^3 $ at $ x=1 $ | $ y = 3x - 2 $ |
Critical Points | $ f’(a) = 0 $ or not differentiable | $ f(x) = x^3 - 12x $ | $ x=2 $ (min), $ x=-2 $ (max) |
Riemann Sum | $ S(P) = \sum f(x_i^*) \Delta x_i $ | $ f(x) = x $ on $2 $ | $ \frac{25(n+1)}{2n} $ |
Definite Integral | $ \int_a^b f(x) dx $ | $ \int_0^2 (3x+1) dx $ | 8 |
Anti-derivative | $ F’(x) = f(x) $ | $ \int x^n dx = \frac{x^{n+1}}{n+1} $ | $ n \neq -1 $ |
Integration by Parts | $ \int fg = f \int g - \int f’ (\int g) $ | $ \int x^2 2^x dx $ | See example |
Integration by Substitution | $ \int f(g(x))g’(x) dx = \int f(u) du $ | $ \int \sin(5x) dx $ | $ -\frac{1}{5} \cos(5x) $ |
This structured approach covers all major concepts from the PDF with definitions, examples, questions, and answers for clarity and practice1.
⁂