Algebraic Equations ๐โจ
Algebraic equations are polynomial equations used in quantitative aptitude exams. They can be of degree 1 (linear), degree 2 (quadratic), or degree 3 (cubic)1.
Linear Equations (Degree 1) โ
- Form: $ ax + c = 0 $
- Examples:
- $ 2x + 3y = 4 $
- $ x + y + z = 10 $
- Solving Linear Equations:
- Use substitution or elimination to find variable values.
- Example:
- $ 2x + 3y = 13 $ …(1)
- $ 3x + 2y = 12 $ …(2)
- Multiply and subtract to eliminate a variable:
- $ 3 \times (2) - 2 \times (1) $ โ $ 5x = 10 $ โ $ x = 2 $
- Substitute $ x $ into (1): $ y = 3 $
- Result: $ x < y $ โ
- Another Example:
- $ 4x + 5y = 14 $ …(1)
- $ 2x + 3y = 5 $ …(2)
- Multiply (2) by 2: $ 4x + 6y = 10 $
- Subtract (1): $ y = -4 $, then $ x = 1 $
- Result: $ x > y $ ๐
Quadratic Equations (Degree 2) ๐ช
- Form: $ ax^2 + bx + c = 0 $
- Examples:
- $ x^2 + 2x + 3 = 0 $
- $ y^2 - 3y + 4 = 0 $
Solving Quadratic Equations:
- Factorization Method ๐งฉ
- Split the middle term and factorize.
- Example:
- $ x^2 - 2x - 15 = 0 $
- $ x^2 - 5x + 3x - 15 = 0 $
- $ x(x-5) + 3(x-5) = 0 $
- $ (x+3)(x-5) = 0 $
- Solutions: $ x = -3 $ or $ x = 5 $ ๐ฏ
- Sridharacharyaโs (Quadratic Formula) Method ๐งฎ
- Formula: $ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $
- Example:
- For $ x^2 - 2x - 15 = 0 $:
- $ x_1 = 5 $, $ x_2 = -3 $ โ๏ธ
- For $ x^2 - 2x - 15 = 0 $:
- Comparing Roots
- Example:
- $ x^2 = 625 $ โ $ x = +25 $ or $ -25 $
- $ y = \sqrt{625} $ โ $ y = 25 $
- Result: $ x \leq y $ ๐ฐ
- Example:
- $ m = \sqrt{324} = 18 $
- $ n^2 - 16n - 36 = 0 $ โ $ n = 18 $ or $ n = -2 $
- Result: $ m \geq n $ ๐
- Example:
Cubic Equations (Degree 3) ๐ฆ
- Form: $ ax^3 + bx^2 + cx + d = 0 $
- Examples:
- $ x^3 + 2x^2 + 3x + 4 = 0 $
- $ 2x^3 + 12x^2 + 30x + 48 = 0 $
Solving and Comparing:
- Example:
- $ x = \sqrt{15625} = 25 $
- $ y^2 = 625 $ โ $ y = +25, -25 $
- Result: $ y \leq x $ ๐งโ๐ซ
Key Points to Remember ๐
- Linear equations: Degree 1, straight-line solutions.
- Quadratic equations: Degree 2, solved by factorization or quadratic formula.
- Cubic equations: Degree 3, solved by finding cube roots or factorization.
- Always compare solutions as required (e.g., $ x < y $, $ x \geq y $).
- For square roots, only the positive root is considered unless otherwise specified.
- For quadratic equations, always check for both possible roots.
Emojis Legend
- โ Linear Equations
- ๐ช Quadratic Equations
- ๐ฆ Cubic Equations
- ๐งฉ Factorization
- ๐งฎ Formula Method
- ๐ฏ Solution
- ๐ Comparison
- ๐ฐ Equal/Relation
- ๐งโ๐ซ Explanation
You can use these notes to quickly revise and practice algebraic equations for quant aptitude tests!1
โ