Simplification
This summary explains the Simplification chapter from your PDF for SSC and other competitive exams. You’ll find key concepts, formulas, solved examples, a cheatsheet, practice questions, and visual aids for better understanding1.
1. Number Basics
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Types of Numbers:
- Natural numbers: 1, 2, 3, …
- Whole numbers: 0, 1, 2, 3, …
- Integers: …, -3, -2, -1, 0, 1, 2, 3, …
- Real numbers: All rational and irrational numbers (e.g., 2.8, -10, 3.13)
- Even numbers: 2, 4, 6, …
- Odd numbers: 1, 3, 5, …
- Prime numbers: 2, 3, 5, 7, 11, …
2. Algebraic Identities (Cheatsheet)
Identity | Formula |
---|---|
Square of sum | $ (a+b)^2 = a^2 + 2ab + b^2 $ |
Square of difference | $ (a-b)^2 = a^2 - 2ab + b^2 $ |
Difference of squares | $ a^2 - b^2 = (a+b)(a-b) $ |
Cube of sum | $ (a+b)^3 = a^3 + b^3 + 3ab(a+b) $ |
Cube of difference | $ (a-b)^3 = a^3 - b^3 - 3ab(a-b) $ |
Sum of cubes | $ a^3 + b^3 = (a+b)(a^2 - ab + b^2) $ |
Difference of cubes | $ a^3 - b^3 = (a-b)(a^2 + ab + b^2) $ |
3. Addition & Subtraction Tricks
Example 1
Q: $ 8 + 88 + 888 + 8888 + 88888 = ? $
Trick: Factor out 8: $ 8 \times (1 + 11 + 111 + 1111 + 11111) = 8 \times 12345 = 98760 $
Example 2
Q: $ 0.8 + 0.88 + 0.888 + 0.8888 + 0.88888 = ? $
Trick: $ 8 \times (0.1 + 0.11 + 0.111 + 0.1111 + 0.11111) = 8 \times 0.54321 = 4.34568 $
Example 3
Q: $ 8.8 + 8.88 + 8.888 + 8.8888 + 8.88888 = ? $
Trick: Add the whole numbers: $ 8 \times 5 = 40 $ Add decimals from previous: $ 4.34568 $ Total: $ 44.34568 $
4. Multiplication Shortcuts
Type 1: Unit Digits Add to 10, Other Digits Same
Q: $ 43 \times 47 $
- $ 4 \times (4+1) = 20 $
- $ 3 \times 7 = 21 $
- Answer: 2021
Type 2: Tens Digits Add to 10, Units Same
Q: $ 46 \times 66 $
- $ (4 \times 6) + 6 = 30 $
- $ 6 \times 6 = 36 $
- Answer: 3036
Type 3: Both Units 5, Numbers Differ by 10
Q: $ 75 \times 65 $
- $ 6 \times (7+1) = 48 $
- Write 75
- Answer: 4875
5. Squares and Cubes
- Squares of 1–50: Memorize for quick calculation.
- Example: $ 56^2 $
- Split as 5 and 6.
- $ (5/6)^2 = 5^2 / 2 \times 5 \times 6 / 6^2 = 25 / 60 / 36 $
- Combine: $ 3136 $
6. Fractions
- Proper Fraction: Numerator < Denominator (e.g., $ \frac{3}{5} $)
- Improper Fraction: Numerator > Denominator (e.g., $ \frac{7}{5} $)
- Mixed Fraction: Whole number + proper fraction (e.g., $ 8 \frac{7}{2} $)
7. VBODMAS Rule
Order of Operations:
- Vinculum (bar)
- Brackets: (), {}, []
- Orders (powers, roots)
- Division
- Multiplication
- Addition
- Subtraction
Table:
B | O | D | M | A | S |
---|---|---|---|---|---|
Brackets | Orders | Divide | Multiply | Add | Subtract |
8. VBODMAS Examples
Example 1
$ 35 \div 7 \times 5 = ? $
- Divide first: $ 35 \div 7 = 5 $
- Multiply: $ 5 \times 5 = 25 $
Example 2
$ 35 \div 5 $ of $ 7 = ? $
- ‘Of’ first: $ 5 \times 7 = 35 $
- Then divide: $ 35 \div 35 = 1 $
Example 3
$ 48 \div 12 $ of $ 2 + [3 + 17 \times 2] $
- Solve inside brackets: $ 17 \times 2 = 34 $, $ 3 + 34 = 37 $
- ‘Of’: $ 12 \times 2 = 24 $
- Divide: $ 48 \div 24 = 2 $
- Add: $ 2 + 37 = 39 $
Example 4
$ 2 \div 2 \div 2 \div 2 \div 2 \div 2 = ? $
- Left to right: $ 2 \div 2 = 1 $, $ 1 \div 2 = 0.5 $, $ 0.5 \div 2 = 0.25 $, etc.
- Final answer: $ 1/16 $
9. Practice Questions
- $ 7 + 77 + 777 + 7777 = ? $
- $ 0.9 + 0.99 + 0.999 + 0.9999 = ? $
- $ 53 \times 57 $ (use special multiplication)
- $ 85 \times 75 $
- $ (a+b)^2 $ when $ a = 12, b = 8 $
- $ (a-b)^3 $ when $ a = 10, b = 4 $
- $ 25 + 75 \div 5 \times 2 $
- $ 16 \div 2 $ of $ 4 + 2 $
- $ 3.5 + 4.5 + 5.5 + 6.5 $
- $ 2 \div 2 \div 2 $
10. Visuals & Graphics
A. VBODMAS Pyramid
Vinculum
Brackets
Orders
Divide
Multiply
Add
Subtract
B. Multiplication Pattern
For numbers like 43 × 47:
|--4--|3| × |--4--|7|
Same tens, units add to 10
11. Quick Reference Table
Topic | Key Formula/Rule |
---|---|
Addition | Combine like terms, factor when possible |
Multiplication | Use patterns for quick calculation |
Squares | $ (a+b)^2 = a^2 + 2ab + b^2 $ |
Cubes | $ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 $ |
Fractions | Proper, Improper, Mixed |
VBODMAS | Order: V > B > O > D > M > A > S |
12. Tips & Tricks
- Memorize squares and cubes up to at least 25 for speed.
- Use multiplication patterns for numbers close to each other.
- Always follow VBODMAS for order of operations.
- For decimals, align digits for addition/subtraction.
With these explanations, formulas, examples, cheatsheet, practice questions, and visuals, you’ll be ready to master Simplification for any exam!
Simplification.pdf ↩︎