Simplification

This summary explains the Simplification chapter from your PDF for SSC and other competitive exams. You’ll find key concepts, formulas, solved examples, a cheatsheet, practice questions, and visual aids for better understanding1.


1. Number Basics

  • Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
  • Types of Numbers:
    • Natural numbers: 1, 2, 3, …
    • Whole numbers: 0, 1, 2, 3, …
    • Integers: …, -3, -2, -1, 0, 1, 2, 3, …
    • Real numbers: All rational and irrational numbers (e.g., 2.8, -10, 3.13)
    • Even numbers: 2, 4, 6, …
    • Odd numbers: 1, 3, 5, …
    • Prime numbers: 2, 3, 5, 7, 11, …

2. Algebraic Identities (Cheatsheet)

IdentityFormula
Square of sum(a+b)2=a2+2ab+b2 (a+b)^2 = a^2 + 2ab + b^2
Square of difference(ab)2=a22ab+b2 (a-b)^2 = a^2 - 2ab + b^2
Difference of squaresa2b2=(a+b)(ab) a^2 - b^2 = (a+b)(a-b)
Cube of sum(a+b)3=a3+b3+3ab(a+b) (a+b)^3 = a^3 + b^3 + 3ab(a+b)
Cube of difference(ab)3=a3b33ab(ab) (a-b)^3 = a^3 - b^3 - 3ab(a-b)
Sum of cubesa3+b3=(a+b)(a2ab+b2) a^3 + b^3 = (a+b)(a^2 - ab + b^2)
Difference of cubesa3b3=(ab)(a2+ab+b2) a^3 - b^3 = (a-b)(a^2 + ab + b^2)

3. Addition & Subtraction Tricks

Example 1

Q: 8+88+888+8888+88888=? 8 + 88 + 888 + 8888 + 88888 = ?

Trick: Factor out 8: 8×(1+11+111+1111+11111)=8×12345=98760 8 \times (1 + 11 + 111 + 1111 + 11111) = 8 \times 12345 = 98760

Example 2

Q: 0.8+0.88+0.888+0.8888+0.88888=? 0.8 + 0.88 + 0.888 + 0.8888 + 0.88888 = ?

Trick: 8×(0.1+0.11+0.111+0.1111+0.11111)=8×0.54321=4.34568 8 \times (0.1 + 0.11 + 0.111 + 0.1111 + 0.11111) = 8 \times 0.54321 = 4.34568

Example 3

Q: 8.8+8.88+8.888+8.8888+8.88888=? 8.8 + 8.88 + 8.888 + 8.8888 + 8.88888 = ?

Trick: Add the whole numbers: 8×5=40 8 \times 5 = 40 Add decimals from previous: 4.34568 4.34568 Total: 44.34568 44.34568


4. Multiplication Shortcuts

Type 1: Unit Digits Add to 10, Other Digits Same

Q: 43×47 43 \times 47

  • 4×(4+1)=20 4 \times (4+1) = 20
  • 3×7=21 3 \times 7 = 21
  • Answer: 2021

Type 2: Tens Digits Add to 10, Units Same

Q: 46×66 46 \times 66

  • (4×6)+6=30 (4 \times 6) + 6 = 30
  • 6×6=36 6 \times 6 = 36
  • Answer: 3036

Type 3: Both Units 5, Numbers Differ by 10

Q: 75×65 75 \times 65

  • 6×(7+1)=48 6 \times (7+1) = 48
  • Write 75
  • Answer: 4875

5. Squares and Cubes

  • Squares of 1–50: Memorize for quick calculation.
  • Example: 562 56^2
    • Split as 5 and 6.
    • (5/6)2=52/2×5×6/62=25/60/36 (5/6)^2 = 5^2 / 2 \times 5 \times 6 / 6^2 = 25 / 60 / 36
    • Combine: 3136 3136

6. Fractions

  • Proper Fraction: Numerator < Denominator (e.g., 35 \frac{3}{5} )
  • Improper Fraction: Numerator > Denominator (e.g., 75 \frac{7}{5} )
  • Mixed Fraction: Whole number + proper fraction (e.g., 872 8 \frac{7}{2} )

7. VBODMAS Rule

Order of Operations:

  • Vinculum (bar)
  • Brackets: (), {}, []
  • Orders (powers, roots)
  • Division
  • Multiplication
  • Addition
  • Subtraction

Table:

BODMAS
BracketsOrdersDivideMultiplyAddSubtract

8. VBODMAS Examples

Example 1

35÷7×5=? 35 \div 7 \times 5 = ?

  • Divide first: 35÷7=5 35 \div 7 = 5
  • Multiply: 5×5=25 5 \times 5 = 25

Example 2

35÷5 35 \div 5 of 7=? 7 = ?

  • ‘Of’ first: 5×7=35 5 \times 7 = 35
  • Then divide: 35÷35=1 35 \div 35 = 1

Example 3

48÷12 48 \div 12 of 2+[3+17×2] 2 + [3 + 17 \times 2]

  • Solve inside brackets: 17×2=34 17 \times 2 = 34 , 3+34=37 3 + 34 = 37
  • ‘Of’: 12×2=24 12 \times 2 = 24
  • Divide: 48÷24=2 48 \div 24 = 2
  • Add: 2+37=39 2 + 37 = 39

Example 4

2÷2÷2÷2÷2÷2=? 2 \div 2 \div 2 \div 2 \div 2 \div 2 = ?

  • Left to right: 2÷2=1 2 \div 2 = 1 , 1÷2=0.5 1 \div 2 = 0.5 , 0.5÷2=0.25 0.5 \div 2 = 0.25 , etc.
  • Final answer: 1/16 1/16

9. Practice Questions

  1. 7+77+777+7777=? 7 + 77 + 777 + 7777 = ?
  2. 0.9+0.99+0.999+0.9999=? 0.9 + 0.99 + 0.999 + 0.9999 = ?
  3. 53×57 53 \times 57 (use special multiplication)
  4. 85×75 85 \times 75
  5. (a+b)2 (a+b)^2 when a=12,b=8 a = 12, b = 8
  6. (ab)3 (a-b)^3 when a=10,b=4 a = 10, b = 4
  7. 25+75÷5×2 25 + 75 \div 5 \times 2
  8. 16÷2 16 \div 2 of 4+2 4 + 2
  9. 3.5+4.5+5.5+6.5 3.5 + 4.5 + 5.5 + 6.5
  10. 2÷2÷2 2 \div 2 \div 2

10. Visuals & Graphics

A. VBODMAS Pyramid

    Vinculum
     Brackets
      Orders
      Divide
      Multiply
      Add
      Subtract

B. Multiplication Pattern

For numbers like 43 × 47:

|--4--|3| × |--4--|7|
Same tens, units add to 10

11. Quick Reference Table

TopicKey Formula/Rule
AdditionCombine like terms, factor when possible
MultiplicationUse patterns for quick calculation
Squares(a+b)2=a2+2ab+b2 (a+b)^2 = a^2 + 2ab + b^2
Cubes(a+b)3=a3+3a2b+3ab2+b3 (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
FractionsProper, Improper, Mixed
VBODMASOrder: V > B > O > D > M > A > S

12. Tips & Tricks

  • Memorize squares and cubes up to at least 25 for speed.
  • Use multiplication patterns for numbers close to each other.
  • Always follow VBODMAS for order of operations.
  • For decimals, align digits for addition/subtraction.

With these explanations, formulas, examples, cheatsheet, practice questions, and visuals, you’ll be ready to master Simplification for any exam!


  1. Simplification.pdf ↩︎