Sets and Functions:- Detailed Course with Examples and Practice
1. Numbers and Basic Operations
1.1 Natural Numbers and Integers
- Natural Numbers ($\mathbb{N}$): Counting numbers starting from 0. $\mathbb{N} = {0, 1, 2, 3, 4, …}$
- Integers ($\mathbb{Z}$): All positive, negative whole numbers, and zero. $\mathbb{Z} = {…, -3, -2, -1, 0, 1, 2, 3, …}$
1.1.3 Arithmetic Operations
Operation | Description | Example |
---|---|---|
Addition (+) | Combine numbers | $5 + 2 = 7$ |
Subtraction (-) | Find the difference | $9 - 4 = 5$ |
Multiplication (×) | Repeated addition | $3 × 4 = 12$ |
Division (÷) | Repeated subtraction | $18 ÷ 3 = 6$ |
Modulo (mod) | Remainder after division | $10 \mod 3 = 1$ |
Practice:
- Calculate $15 \mod 4$. Answer: $3$ (since $15 ÷ 4 = 3$ remainder $3$)
- What is $7 × 6$? Answer: $42$
1.1.4 Factors and Multiples
- Factor: $a$ is a factor of $b$ if $b \mod a = 0$.
- Multiple: $b$ is a multiple of $a$.
Examples:
- 2 is a factor of 6 ($6 \mod 2 = 0$).
- 10 is a multiple of 5.
1.2 Rational and Real Numbers
- Rational Numbers ($\mathbb{Q}$): Numbers of the form $\frac{p}{q}$, where $p, q \in \mathbb{Z}, q \neq 0$.
- Example: $\frac{2}{5}, \frac{10}{20} = \frac{1}{2}$ (after reduction).
- Irrational Numbers: Cannot be written as $\frac{p}{q}$.
- Examples: $\sqrt{2}, \pi$
- Real Numbers ($\mathbb{R}$): All rational and irrational numbers.
Practice:
- Is $0.333…$ rational? Answer: Yes, $0.333… = \frac{1}{3}$.
1.2.1 Greatest Common Divisor (gcd)
- Definition: The largest positive integer dividing both $p$ and $q$.
- Examples:
- $\gcd(9, 12) = 3$
- $\gcd(15, 45) = 15$
- $\gcd(0, q) = q$
- $\gcd(1, q) = 1$
Practice:
- Find $\gcd(18, 24)$. Answer: $6$
2. Sets
2.1 Definition and Notation
- Set: A collection of well-defined objects.
- Notation: Curly braces, e.g., ${1, 2, 3}$
- Elements: Members of a set.
Examples:
- Finite: ${0, 1, 2, …, 9}$ (natural numbers < 10)
- Infinite: ${0, 2, 4, …}$ (even numbers)
2.2 Cardinality
- Cardinality: Number of elements in a set.
- Example: $|{1, 2, 3}| = 3$
2.3 Subsets
- Subset: $X \subseteq Y$ if every element of $X$ is in $Y$.
- Proper Subset: $X \subset Y$ if $X \subseteq Y$ and $X \neq Y$.
Examples:
- ${1, 2} \subseteq {1, 2, 3}$
- ${1, 2, 3} \subset {1, 2, 3, 4}$
Practice:
- Is ${2, 4} \subseteq {2, 3, 4, 5}$? Answer: Yes
2.4 Set Comprehension
- Definition: Describes a set by a property.
- Example: ${x^2 \mid x \in \mathbb{Z}, x \text{ even}}$ (squares of even integers)
3. Relations
3.1 Cartesian Product
- Definition: $X \times Y = {(x, y) \mid x \in X, y \in Y}$
- Example:
- $A = {a, b}, B = {1, 2}$
- $A \times B = {(a, 1), (a, 2), (b, 1), (b, 2)}$
3.2 Binary Relation
- Definition: A subset of $X \times Y$.
- Example:
- $A = {a, b}, B = {1, 2, 3}$
- $R = {(a, 1), (b, 2)}$ is a relation from $A$ to $B$.
3.3 Properties of Relations
Property | Definition | Example |
---|---|---|
Reflexive | $(x, x) \in R$ for all $x$ in $S$ | ${(1,1), (2,2), (3,3)}$ |
Symmetric | If $(x, y) \in R$, then $(y, x) \in R$ | ${(1,2), (2,1)}$ |
Transitive | If $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$ | ${(1,2), (2,3), (1,3)}$ |
Equivalence | Relation is reflexive, symmetric, and transitive | ${(1,1), (2,2), (1,2), (2,1)}$ |
Practice:
- Is the relation $R = {(1,2), (2,1)}$ on ${1,2}$ symmetric? Answer: Yes
4. Functions
4.1 Definition
- Function: A relation where each input has exactly one output.
- Notation: $f: X \rightarrow Y$
- Domain: Set $X$ (inputs)
- Co-domain: Set $Y$ (possible outputs)
- Range: Actual outputs ${f(x) \mid x \in X}$
Examples:
- $f(x) = x^2$, $x \in \mathbb{R}$, domain: $\mathbb{R}$, range: $[0, \infty)$
4.2 Types of Functions
Type | Definition | Example |
---|---|---|
Injective | Each input maps to a unique output | $f(x) = 2x$ |
Surjective | Every element in co-domain is hit | $f(x) = x^3$, $f: \mathbb{R} \rightarrow \mathbb{R}$ |
Bijective | Both injective and surjective | $f(x) = x + 1$, $f: \mathbb{R} \rightarrow \mathbb{R}$ |
4.3 Finding Domain and Range
- Example: $f(x) = \sqrt{x}$, domain: $[0, \infty)$
- Example: $f(x) = x^2$, range: $[0, \infty)$, not surjective if co-domain is $\mathbb{R}$
Practice:
- Find the domain of $f(x) = \frac{1}{x-2}$. Answer: $x \neq 2$
4.4 Function Composition
- Definition: $(f \circ g)(x) = f(g(x))$
- Example:
- $f(x) = 2x$, $g(x) = x + 1$
- $(f \circ g)(x) = f(g(x)) = 2(x+1) = 2x + 2$
4.5 Inverse Functions
- Definition: $f^{-1}$ exists if $f$ is bijective.
- Property: $f^{-1}(f(x)) = x$
- Example: $f(x) = 3x + 2$, $f^{-1}(y) = \frac{y-2}{3}$
5. Practice Questions
Sets and Relations
- List all subsets of ${a, b}$. Answer: ${}, {a}, {b}, {a, b}$
- If $A = {1,2}$, $B = {3,4}$, find $A \times B$. Answer: ${(1,3), (1,4), (2,3), (2,4)}$
Functions
- Is $f(x) = x^2$ injective on $\mathbb{R}$? Answer: No, since $f(2) = f(-2) = 4$.
- Find the range of $f(x) = |x|$, $x \in \mathbb{R}$. Answer: $[0, \infty)$
- If $f(x) = 2x + 1$, find $f^{-1}(y)$. Answer: $f^{-1}(y) = \frac{y-1}{2}$
6. Extra Examples
Set Comprehension
- Set of odd numbers less than 10: ${x \mid x \in \mathbb{N}, x < 10, x \mod 2 = 1} = {1, 3, 5, 7, 9}$
Relations
- On $S = {1, 2, 3}$, define $R = {(x, y) \mid x \leq y}$.
- Is $R$ reflexive? Yes, since $(x, x) \in R$ for all $x$.
- Is $R$ symmetric? No, since $(1, 2) \in R$ but $(2, 1) \notin R$.
Functions
- If $f(x) = x + 2$, $g(x) = 2x$, find $(g \circ f)(x)$.
- $g(f(x)) = 2(x + 2) = 2x + 4$
7. Answers to Practice Questions
- $15 \mod 4 = 3$
- $7 \times 6 = 42$
- $\gcd(18, 24) = 6$
- Subsets of ${a, b}$: ${}, {a}, {b}, {a, b}$
- $A \times B = {(1,3), (1,4), (2,3), (2,4)}$
- $f(x) = x^2$ is not injective on $\mathbb{R}$
- Range of $f(x) = |x|$ is $[0, \infty)$
- $f^{-1}(y) = \frac{y-1}{2}$
8. Layout/UI Suggestions
- Use color-coded boxes for definitions, theorems, and examples.
- Add collapsible sections for practice questions and answers.
- Include diagrams for set relations, function mappings, and Venn diagrams.
- Provide interactive quizzes after each section for self-assessment.
This structure covers the essentials of sets and functions, with added clarity, examples, and practice. For a more interactive experience, consider using digital flashcards or quizzes after each topic.
⁂